【題目】某工廠現(xiàn)在平均每天比原計劃多生產(chǎn)50臺機(jī)器,現(xiàn)在生產(chǎn)600臺機(jī)器所需要的時間與原計劃生產(chǎn)450臺機(jī)器所需要的時間相同.
(1)原計劃平均每天生產(chǎn)多少臺機(jī)器?
(2)若該工廠要在不超過5天的時間,生產(chǎn)1100臺機(jī)器,則平均每天至少還要再多生產(chǎn)多少臺機(jī)器?

【答案】
(1)解:設(shè)原計劃平均每天生產(chǎn)x臺機(jī)器,則現(xiàn)在每天生產(chǎn)(x+50)臺機(jī)器,

解得,x=150,

經(jīng)檢驗:x=150是原方程的根,

答:原計劃平均每天生產(chǎn)150臺機(jī)器;


(2)解:設(shè)平均每天至少還要再多生產(chǎn)y臺機(jī)器,

5×(200+x)≥1100

解得,x≥20,

答:平均每天至少還要再多生產(chǎn)20機(jī)器.


【解析】(1)根據(jù)題意可以列出相應(yīng)的分式方程,從而可以求得原計劃平均每天生產(chǎn)的機(jī)器數(shù)量;(2)根據(jù)題意可以列出相應(yīng)的不等式,從而可以求得平均每天至少還要再多生產(chǎn)多少臺機(jī)器.
【考點精析】利用分式方程的應(yīng)用對題目進(jìn)行判斷即可得到答案,需要熟知列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗根、寫出答案(要有單位).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】判斷關(guān)于x的方程x2+mx+m2)=0的根的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天早晨,王老師從家出發(fā),騎摩托車前往學(xué)校,途中在路旁一家飯店吃早餐,如圖所示的是王老師從家到學(xué)校這一過程中行駛路程s(千米)與時間t(分)之間的關(guān)系.
(1)學(xué)校離他家多遠(yuǎn)?從出發(fā)到學(xué)校,用了多少時間?
(2)王老師吃早餐用了多少時間?
(3)王老師吃早餐以前的速度快還是吃完早餐以后的速度快?最快時速達(dá)到多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件中,能用列舉法求得事件發(fā)生的概率的是(

A.投一枚圖釘,釘尖朝上

B.一名籃球運動員在罰球線上投籃,投中

C.把一粒種子種在花盆中,發(fā)芽

D.同時拋擲兩枚質(zhì)地均勻的骰子,兩個骰子的點數(shù)相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】上海世博會的某紀(jì)念品原價168元,連續(xù)兩次降價a%后售價為128元.下列所列方程中正確的( )

A.168(1+a%)=128B.168(1-a%)=128

C.168(1-2a%)=128D.168(1+2a%)=128

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.

(1)求拋物線的解析式;

(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);

(3)當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點為M的拋物線分別與x軸相交于點A,B(點A在點B的右側(cè)),與y軸相交于點C(0,﹣3).

(1)求拋物線的函數(shù)表達(dá)式;

(2)判斷BCM是否為直角三角形,并說明理由.

(3)拋物線上是否存在點N(點N與點M不重合),使得以點A,B,C,N為頂點的四邊形的面積與四邊形ABMC的面積相等?若存在,求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線與x軸、y軸的交點分別為A、B,將∠OBA對折,使點O的對應(yīng)點H落在直線AB上,折痕交x軸于點C.

(1)直接寫出點C的坐標(biāo),并求過A、B、C三點的拋物線的解析式;

(2)若拋物線的頂點為D,在直線BC上是否存在點P,使得四邊形ODAP為平行四邊形?若存在,求出點P的坐標(biāo);若不存在,說明理由;

(3)設(shè)拋物線的對稱軸與直線BC的交點為T,Q為線段BT上一點,直接寫出|QA﹣QO|的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線交x軸于A(﹣1,0)和B(5,0)兩點,交y軸于點C,點D是線段OB上一動點,連接CD,將線段CD繞點D順時針旋轉(zhuǎn)90°得到線段DE,過點E作直線l⊥x軸于H,過點C作CF⊥l于F.

(1)求拋物線解析式;

(2)如圖2,當(dāng)點F恰好在拋物線上時,求線段OD的長;

(3)在(2)的條件下:

①連接DF,求tan∠FDE的值;

②試探究在直線l上,是否存在點G,使∠EDG=45°?若存在,請直接寫出點G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案