【題目】如圖,方格紙中每個小正方形的邊長都為1,在方格紙內(nèi)將經(jīng)過一次平移后得到,圖中標出了點的對應點,利用網(wǎng)格點和三角板畫圖或計算:

1)在給定方格紙中畫出平移后的

2)畫出邊的中線

3)畫出邊的高線

4的面積為

5)在圖中能使的格點的個數(shù)有 (點異于點).

【答案】1)見解析;(2)見解析;(3)見解析;(48;(57

【解析】

1)根據(jù)圖形平移的性質(zhì)畫出平移后的△ABC即可;
2)畫出AB邊上的中線CD即可;
3)過點ABC的延長線作垂線,垂足為點E即可;
4)利用三角形的面積公式求解即可;
5)過點BBPAC,直線BP與格點的交點即為所求,還有AC下方的一個點.

解:(1)如圖,△ABC即為所求;

2)如圖,線段CD即為所求;

3)如圖,線段AE即為所求;

4SABC=×4×4=8
故答案為:8;
5)如圖,共有7個格點.
故答案為:7

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】綠水青山,就是金山銀山.某旅游景區(qū)為了保護環(huán)境,需購買兩種型號的垃圾處理設備共10臺,已知每臺型設備日處理能力為12;每臺型設備日處理能力為15購回的設備日處理能力不低于140.

(1)請你為該景區(qū)設計購買兩種設備的方案;

(2)已知每臺型設備價格為3萬元,每臺型設備價格為4.4萬元.廠家為了促銷產(chǎn)品,規(guī)定貨款不低于40萬元時,則按9折優(yōu)惠;:采用(1)設計的哪種方案,使購買費用最少,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結(jié)論:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0其中正確的是( ).

A. ①②③④ B. ①②④ C. ①③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.

(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;

(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, DE AB E , DF AC F ,若 BD CD 、 BE CF

1)求證:AD平分BAC ;

2)已知AC 14BE 2,求AB的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,OC OD,OC OD ,DC 的延長線交 y 軸正半軸上點 B ,過點C CA BD x 軸負半軸于點A

1)如圖1,求證:OAOB

2)如圖1,連AD,作OM ACAD于點M,求證: BC 2OM

3)如圖2,點EOC 的延長線上一點,連DE,過點DDFDEDF DE ,連CF DO 的延長線于點G OG 4,求CE 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖24,在平面直角坐標系中,圓D與軸相切于點C(0,4),與軸相交于A、B兩點,且AB=6

(1)D點的坐標是 ,圓的半徑為

(2)求經(jīng)過C、A、B三點的拋物線所對應的函數(shù)關(guān)系式;

(3)設拋物線的頂點為F,試證明直線AF與圓D相切;

(4)在軸下方的拋物線上,是否存在一點N,使面積最大,最大面積是多少?并求出點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售櫻桃,已知櫻桃的進價為15元/千克,如果售價為20元/千克,那么每天可售出250千克,如果售價為25元/千克,那么每天可獲利2000元,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷售量y(千克)與售價x(元/千克)之間存在一次函數(shù)關(guān)系.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若櫻桃的售價不得高于28元/千克,請問售價定為多少時,該超市每天銷售櫻桃所獲的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠BAC=90°,AB=AC,DBC邊上,把ABD沿AD折疊后,使得點B落在點E處,連接CE,若∠DBE=20°,則∠ADC=________.

查看答案和解析>>

同步練習冊答案