【題目】如圖, DE AB 于 E , DF AC 于 F ,若 BD CD 、 BE CF ,
(1)求證:AD平分BAC ;
(2)已知AC 14,BE 2,求AB的長(zhǎng)
【答案】(1)見(jiàn)解析;(2)10.
【解析】
(1)求出∠E=∠DFC=90°,根據(jù)全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根據(jù)角平分線性質(zhì)得出即可;
(2)根據(jù)全等三角形的性質(zhì)得出AE=AF,BE=CF,即可求出答案.
證明:∵DE⊥AB,DF⊥AC,
∴∠E=∠DFC=90°,
∴在Rt△BED和Rt△CFD中,
,
∴Rt△BED≌Rt△CFD(HL),
∴DE=DF,
∵DE⊥AB,DF⊥AC,
∴AD平分∠BAC;
(2)解:∵Rt△BED≌Rt△CFD,
∴AE=AF,CF=BE=2,
∵AC=14,
∴AF=AC-CF=14-2=12.
在Rt△AED和Rt△AFD中,
∵ ,
∴Rt△AED≌Rt△AFD,
∴AE=AF=12,
∴AB=AE-BE=12-2=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校九年級(jí)學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級(jí)名學(xué)生進(jìn)行測(cè)試,并把測(cè)試成績(jī)(單位:) 繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
請(qǐng)根據(jù)圖表中所提供的信息,完成下列問(wèn)題
(1)表中= ,= ;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)跳遠(yuǎn)成績(jī)大于等于為優(yōu)秀,若該校九年級(jí)共有名學(xué)生,估計(jì)該年級(jí)學(xué)生立定跳遠(yuǎn)成績(jī)優(yōu)秀的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】郵遞員騎車從郵局出發(fā),先向南騎行2 km,到達(dá)A村,繼續(xù)向南騎行3 km到達(dá)B村,然后向北騎行9 km到達(dá)C村,最后回到郵局.
(1)以郵局為原點(diǎn),以向北為正方向,用0.5 cm表示1 km,畫(huà)出數(shù)軸,并在該數(shù)軸上表示出A,B,C三個(gè)村莊的位置.
(2)C村離A村有多遠(yuǎn)?
(3)郵遞員一共騎了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(原題)已知直線AB∥CD,點(diǎn)P為平行線AB,CD之間的一點(diǎn).如圖1,若∠ABP=50°,∠CDP=60°,BE平分∠ABP,DE平分∠CDP,求∠BED的度數(shù).
(探究)如圖2,當(dāng)點(diǎn)P在直線AB的上方時(shí),若∠ABP=α,∠CDP=β,∠ABP和∠CDP的平分線交于點(diǎn)E1,∠ABE1與∠CDE1的角平分線交于點(diǎn)E2,∠ABE2與∠CDE2的角平分線交于點(diǎn)E3,…以此類推,求∠En的度數(shù).
(變式)如圖3,∠ABP的角平分線的反向延長(zhǎng)線和∠CDP的補(bǔ)角的角平分線交于點(diǎn)E,試猜想∠P與∠E的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“了解”部分所對(duì)應(yīng)扇形的圓心角為 度;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì);
(3)若該中學(xué)共有學(xué)生1200人,估計(jì)該中學(xué)學(xué)生對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1,在方格紙內(nèi)將經(jīng)過(guò)一次平移后得到,圖中標(biāo)出了點(diǎn)的對(duì)應(yīng)點(diǎn),利用網(wǎng)格點(diǎn)和三角板畫(huà)圖或計(jì)算:
(1)在給定方格紙中畫(huà)出平移后的.
(2)畫(huà)出邊的中線.
(3)畫(huà)出邊的高線.
(4)的面積為 .
(5)在圖中能使的格點(diǎn)的個(gè)數(shù)有 個(gè) (點(diǎn)異于點(diǎn)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)在一次蠟燭燃燒試驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度 (厘米)與燃燒時(shí)間 (小時(shí))之間的關(guān)系如圖所示,其中乙蠟燭燃燒時(shí)與之間的函數(shù)關(guān)系式是.
(1)甲蠟燭燃燒前的高度是_________厘米,乙蠟燭燃燒的時(shí)間是________小時(shí).
(2)求甲蠟燭燃燒時(shí)與之間的函數(shù)關(guān)系式.
(3)求出圖中交點(diǎn)的坐標(biāo),并說(shuō)明點(diǎn)的實(shí)際意義.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請(qǐng)?jiān)趫D中,畫(huà)出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫(huà)出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在東西向的馬路上有一個(gè)巡崗?fù)?/span>,巡崗員從崗?fù)?/span>出發(fā)以速度勻速來(lái)回巡邏,如果規(guī)定向東巡邏為正,向西巡邏為負(fù),巡邏情況記錄如下:(單位:千米)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
(1)第幾次結(jié)束時(shí)巡邏員甲距離崗?fù)?/span>最遠(yuǎn)?距離有多遠(yuǎn)?
(2)甲巡邏過(guò)程中配置無(wú)線對(duì)講機(jī),并一直與留守在崗?fù)?/span>的乙進(jìn)行通話,問(wèn)甲巡邏過(guò)程中,甲與乙保持通話的時(shí)長(zhǎng)共多少小時(shí)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com