【題目】如圖是圓桌正上方的燈泡O發(fā)出的光線照射桌面后,在地面上形成陰影(圓形)的示意圖.已知桌面的直徑為1.2m,桌面距離地面1m,若燈泡O距離地面3m,則地面上陰影部分的面積為_____m2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OD平分∠BOC,OE平分∠AOC.
(1)若∠BOC=60°,∠AOC=40°,求∠DOE的度數(shù);
(2)若∠DOE=n°,求∠AOB的度數(shù);
(3)若∠DOE+∠AOB=180°,求∠AOB與∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校的春季趣味運動會深受學生喜愛,該校體育教師為了了解該次運動會中四個項目的受歡迎程度,隨機抽取了部分學生進行問卷調(diào)查,被調(diào)查學生須從“托球跑、擲飛盤、推小車、鴨子步”四個項目中選擇自己最喜歡的一項.
根據(jù)調(diào)查結(jié)果,體育教師繪制了圖1和圖2兩個統(tǒng)計圖(均未完成),請根據(jù)圖1和圖2的信息,解答下列問題.
(1)此次共調(diào)查了多少名學生?
(2)將條形統(tǒng)計圖補充完整.
(3)圖2中“鴨子步”所在扇形圓心角為多少度?
(4)若全校有學生1600人,估計該校喜歡“推小車”項目的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【題目】有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.將這副直角三角板按如圖1所示位置擺放,點B與點F重合,直角邊BA與FD在同一條直線上.現(xiàn)固定三角板ABC,將三角板DEF沿射線BA方向平行移動,當點F運動到點A時停止運動.
(1)如圖2,當三角板DEF運動到點D與點A重合時,設EF與BC交于點M,則∠EMC= 度;
(2)如圖3,在三角板DEF運動過程中,當EF經(jīng)過點C時,求FC的長;
(3)在三角板DEF運動過程中,設BF=x,兩塊三角板重疊部分的面積為y,求y與x的函數(shù)解析式,并求出對應的x取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD相交于點O,O是AC的中點,AD//BC,AC=8,BD=6.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為原點,A、B為數(shù)軸上兩點,AB=15,且OA:OB=2:1,點P從點B以每秒4個單位的速度向右運動.
(1)A、B對應的數(shù)分別為 、 ;
(2)當點P運動時,分別取BP的中點E,AO的中點F,請畫圖,并求出的值;
(3)若當點P開始運動時,點A、B分別以每秒2個單位和每秒5個單位的速度同時向右運動,是否存在常數(shù)m,使得3AP+2OP﹣mBP為定值?若存在,請求出m的值以及這個定值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
種類 | A | B | C | D | E | F |
上學方式 | 電動車 | 私家車 | 公共交通 | 自行車 | 步行 | 其他 |
某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的學生共有____人,其中選擇B類的人數(shù)有____人.
(2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.
(3)若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊AB=20,面積為320,∠BAD<90°,⊙O與邊AB,AD都相切,若AO=10,則⊙O的半徑長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分c1與經(jīng)過點A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.
(1)求A、B兩點的坐標;
(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;
(3)當△BDM為直角三角形時,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com