【題目】如圖是圓桌正上方的燈泡O發(fā)出的光線照射桌面后,在地面上形成陰影(圓形)的示意圖.已知桌面的直徑為1.2m,桌面距離地面1m,若燈泡O距離地面3m,則地面上陰影部分的面積為_____m2

【答案】0.81π

【解析】分析:如圖設C,D分別是桌面和其地面影子的圓心,依題意可以得到△OBC∽△OAD,然后由它們的對應邊成比例可以求出地面影子的半徑,這樣可以求出陰影部分的面積.

詳解:如圖設C,D分別是桌面和其地面影子的圓心,CB∥AD, ∴△OBC∽△OAD

∴而OD=3,CD=1, ∴OC=OD-CD=3-1=2,BC=×1.2=0.6, ∴

∴AD=0.9 , S=π×0.92=0.81πm2,這樣地面上陰影部分的面積為0.81πm2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OD平分∠BOC,OE平分∠AOC

1)若∠BOC=60°,∠AOC=40°,求∠DOE的度數(shù);

2)若∠DOE=n°,求∠AOB的度數(shù);

3)若∠DOE+AOB=180°,求∠AOB與∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校的春季趣味運動會深受學生喜愛,該校體育教師為了了解該次運動會中四個項目的受歡迎程度,隨機抽取了部分學生進行問卷調(diào)查,被調(diào)查學生須從托球跑、擲飛盤、推小車、鴨子步四個項目中選擇自己最喜歡的一項.

根據(jù)調(diào)查結(jié)果,體育教師繪制了圖1和圖2兩個統(tǒng)計圖(均未完成),請根據(jù)圖1和圖2的信息,解答下列問題.

(1)此次共調(diào)查了多少名學生?

(2)將條形統(tǒng)計圖補充完整.

(3)2鴨子步所在扇形圓心角為多少度?

(4)若全校有學生1600人,估計該校喜歡推小車項目的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【題目】有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.將這副直角三角板按如圖1所示位置擺放,點B與點F重合,直角邊BAFD在同一條直線上.現(xiàn)固定三角板ABC,將三角板DEF沿射線BA方向平行移動,當點F運動到點A時停止運動.

(1)如圖2,當三角板DEF運動到點D與點A重合時,設EFBC交于點M,則∠EMC=  度;

(2)如圖3,在三角板DEF運動過程中,當EF經(jīng)過點C時,求FC的長;

(3)在三角板DEF運動過程中,設BF=x,兩塊三角板重疊部分的面積為y,求yx的函數(shù)解析式,并求出對應的x取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點O,OAC的中點,AD//BC,AC=8,BD=6.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為原點,A、B為數(shù)軸上兩點,AB15,且OAOB21,點P從點B以每秒4個單位的速度向右運動.

1A、B對應的數(shù)分別為   、   ;

2)當點P運動時,分別取BP的中點EAO的中點F,請畫圖,并求出的值;

3)若當點P開始運動時,點AB分別以每秒2個單位和每秒5個單位的速度同時向右運動,是否存在常數(shù)m,使得3AP+2OPmBP為定值?若存在,請求出m的值以及這個定值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

F

上學方式

電動車

私家車

公共交通

自行車

步行

其他

某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖

根據(jù)以上信息,回答下列問題:

(1)參與本次問卷調(diào)查的學生共有____人,其中選擇B類的人數(shù)有____人.

(2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.

(3)若將AC、D、E這四類上學方式視為綠色出行,請估計該校每天綠色出行的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊AB=20,面積為320,∠BAD<90°,⊙O與邊AB,AD都相切,若AO=10,則⊙O的半徑長為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分c1與經(jīng)過點A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.

(1)求A、B兩點的坐標;

(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;

(3)當△BDM為直角三角形時,求m的值.

查看答案和解析>>

同步練習冊答案