(2012•西城區(qū)模擬)如圖,路燈下一墻墩(用線段AB表示)的影子是BC,小明(用線段DE表示)的影子是EF,在M處有一顆大樹,它的影子是MN.
(1)指定路燈的位置(用點P表示);
(2)在圖中畫出表示大樹高的線段;
(3)若小明的眼睛近似地看成是點D,試畫圖分析小明能否看見大樹.

【答案】分析:根據(jù)中心投影的特點可知,連接物體和它影子的頂端所形成的直線必定經(jīng)過點光源.所以分別把AB和DE的頂端和影子的頂端連接并延長可交于一點,即點光源的位置,再由點光源出發(fā)連接MN頂部N的直線與地面相交即可找到MN影子的頂端.線段MN是大樹的高.若小明的眼睛近似地看成是點D,則看不到大樹,MN處于視點的盲區(qū).
解答:解:(1)點P是燈泡的位置;

(2)線段MG是大樹的高.

(3)視點D看不到大樹,MN處于視點的盲區(qū).
(敘述不清,只要抓住要點,酌情給分)
點評:本題考查中心投影的作圖,難度不大,體現(xiàn)了學(xué)數(shù)學(xué)要注重基礎(chǔ)知識的新課標(biāo)理念.解題的關(guān)鍵是要知道:連接物體和它影子的頂端所形成的直線必定經(jīng)過點光源.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)一模)(1)解不等式:x>
1
2
x+1
;            
(2)解方程組
x-2y=0
3x+2y=8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)一模)已知:如圖,A點坐標(biāo)為(-
32
,0)
,B點坐標(biāo)為(0,3).
(1)求過A,B兩點的直線解析式;
(2)過B點作直線BP與x軸交于點P,且使OP=2OA,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)一模)已知:如圖1,矩形ABCD中,AB=6,BC=8,E、F、G、H分別是AB、BC、CD、DA四條邊上的點(且不與各邊頂點重合),設(shè)m=EF+FG+GH+HE,探索m的取值范圍.
(1)如圖2,當(dāng)E、F、G、H分別是AB、BC、CD、DA四邊中點時,m=
20
20

(2)為了解決這個問題,小貝同學(xué)采用軸對稱的方法,如圖3,將整個圖形以CD為對稱軸翻折,接著再連續(xù)翻折兩次,
從而找到解決問題的途徑,求得m的取值范圍.①請在圖3中補全小貝同學(xué)翻折后的圖形;②m的取值范圍是
20≤m<28
20≤m<28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)一模)已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設(shè)a<0,當(dāng)二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個交點的距離為
13
時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為
3
13
2
?若存在求出P點坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)二模)將代數(shù)式x2-6x+10化為(x-m)2+n的形式(其中m,n為常數(shù)),結(jié)果為
(x-3)2+1
(x-3)2+1

查看答案和解析>>

同步練習(xí)冊答案