【題目】如圖,已知拋物線過點,過定點 的直線:與拋物線交于、兩點,點在點的右側,過點作軸的垂線,垂足為.
(1)求拋物線的解析式;
(2)設點在x軸上運動,連接,作的垂直平分線與過點D作x軸的垂線交于點,判斷點是否在拋物線上,并證明你的判斷;
(3)若,設的中點為,拋物線上是否存在點,使得周長最小,若存在求出周長的最小值,若不存在說明理由;
(4)若,在拋物線上是否存在點,使得的面積為,若存在求出點的坐標,若不存在說明理由.
【答案】(1);(2)在,理由詳見解析;(3)存在,;(4)存在, 或或
【解析】
(1)拋物線過點,利用待定系數(shù)法即可求解;
(2)設I的坐標為 ,過I作IH⊥y軸于點H,由點I在線段DF的垂直平分線上,求得ID=IF=y,在Rt中,利用勾股定理計算,求得得點I的坐標為,從而說明點在拋物線上;
(3)先求得的中點M的坐標為,作PN⊥軸于點N,利用(2)的結論:拋物線上的點到點F的距離等于它到軸的距離,當三點共線時,周長最小,即可求得答案;
(4)作QR⊥軸于點D,交AB于點R,先求得直線的解析式和點的坐標,利用三角形面積公式求得,再求得,設點的坐標為:,則點的坐標為:,則,解方程即可求得點的坐標.
(1)∵拋物線過點,
∴,
解得:,
∴拋物線的解析式為:;
(2)在,理由如下:
設I的坐標為 ,過I作IH⊥y軸于點H,如圖:
則,,
∵點I在線段DF的垂直平分線上,
∴ID=IF=y,
在Rt中,,
∴,
化簡得:,
∴點I在拋物線上;
(3)存在,理由如下:
若,設的中點為,
,
消去y得:,
∴點M的橫坐標為:,
縱坐標為:,
∴點M的坐標為:,
由(2)可知:拋物線上的點到點F的距離等于它到軸的距離,
設拋物線上存在點P,使得周長最小,
過點P作PN⊥軸于點N,如圖:
∵,
由于是定值,,
∴當三點共線,即⊥軸于點N時,周長最小,
此時點的坐標為:,,
,
∴周長最小值為:;
(4)存在,理由如下:
過點Q作QR⊥軸于點D,交AB于點R,如圖,
將代入得:,
∴直線的解析式為:,
解得:,,
∴點的坐標為:,
,
∵的面積為,
∴,
∴,
設點的坐標為:,則點的坐標為:,
∴,
當時,
解得:,此時點的坐標為:,
當時,即,
,
解得:或,此時點的坐標為:或,
綜上:滿足條件的點為: 或或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點D,E分別是邊AB,AC上的點,DE∥BC,點H是邊BC上的點,連接AH交線段DE于點G,且BH=DE=12,DG=8,S△ADG=12,則S四邊形BCED=( 。
A.24B.22.5C.20D.25
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,,.點從開始沿邊向點以的速度移動,與此同時,點從點開始沿邊向點以的速度移動.如果、分別從、同時出發(fā),當點運動到點時,兩點停止運動,問:
經(jīng)過幾秒,的面積等于?
(2)的面積會等于嗎?若會,請求出此時的運動時間;若不會,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,∠C=90°,AB=8,CD是AB邊上的中線,作CD的中垂線與CD交于點E,與BC交于點F.若CF=x,tanA=y,則x與y之間滿足( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,M、N分別是邊AD、BC邊上的中點,且△ABM≌△DCM;E、F分別是線段BM、CM的中點.
(1)求證:平行四邊形ABCD是矩形.
(2)求證:EF與MN互相垂直.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方方駕駛小汽車勻速地從A地行使到B地,行駛里程為480千米,設小汽車的行使時間為t(單位:小時),行使速度為v(單位:千米/小時),且全程速度限定為不超過120千米/小時.
⑴求v關于t的函數(shù)表達式;
⑵方方上午8點駕駛小汽車從A出發(fā).
①方方需在當天12點48分至14點(含12點48分和14點)間到達B地,求小汽車行駛速度v的范圍.
②方方能否在當天11點30分前到達B地?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班“數(shù)學興趣小組”對函數(shù),的圖象和性質進行了探究過程如下,請補充完成:
(1)函數(shù)的自變量的取值范圍是__________________;
(2)下表是與的幾組對應值.請直接寫出,的值:______________;________.
… | 0 | 2 | 3 | 4 | … | |||||||
… |
| -3 | 5 | 3 | … |
(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)通過觀察函數(shù)的圖象,小明發(fā)現(xiàn)該函數(shù)圖象與反比例函數(shù)的圖象形狀相同,是中心對稱圖形,且點和是一組對稱點,則其對稱中心的坐標為________.
(5)請寫出一條該函數(shù)的性質:___________________.
(6)當時,關于的方程有實數(shù)解,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】青青草原上,灰太狼每天都想著如何抓羊,而且是屢敗屢試,永不言棄.(如圖所示)一天,灰太狼在自家城堡頂部A處測得懶羊羊所在地B處的俯角為60°,然后下到城堡的C處,測得B處的俯角為30°.已知AC=50米,若灰太狼以5米/秒的速度從城堡底部D處出發(fā),幾秒鐘后能抓到懶羊羊?(結果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com