【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.(不寫解答過程,直接寫出結(jié)果)

(1)若△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,則點(diǎn)A1的坐標(biāo)為 ;

(2)將△ABC向右平移4個(gè)單位長度得到△A2B2C2,則點(diǎn)B2的坐標(biāo)為

(3)將△ABC繞O點(diǎn)順時(shí)針方向旋轉(zhuǎn)90°,則點(diǎn)C走過的路徑長為

(4)在x軸上找一點(diǎn)P,使PA+PB的值最小,則點(diǎn)P的坐標(biāo)為

【答案】(1)(2,﹣3);(2)(3,1);(3)π;(4),0).

【解析】

試題分析:(1)利用關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo)特征求解;

(2)利用點(diǎn)的平移規(guī)律求解;

(3)點(diǎn)C走過的路徑為以點(diǎn)O為圓心,OC為半徑,圓心角為90度的弧,然后根據(jù)弧長公式計(jì)算點(diǎn)C走過的路徑長;

(4)先確定點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B′坐標(biāo)為(﹣1,﹣1),連結(jié)AB′交x軸于P點(diǎn),根據(jù)兩點(diǎn)之間線段最短可確定PA+PB的值最小,接著利用待定系數(shù)法求出直線AB′的解析式,然后求直線AB′與x軸的交點(diǎn)坐標(biāo)就看得到點(diǎn)P的坐標(biāo).

試題解析:(1)若△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,則點(diǎn)A1的坐標(biāo)為(2,﹣3);

(2)將△ABC向右平移4個(gè)單位長度得到△A2B2C2,則點(diǎn)B2的坐標(biāo)為(3,1);

(3)將△ABC繞O點(diǎn)順時(shí)針方向旋轉(zhuǎn)90°,則點(diǎn)C走過的路徑長==π;

(4)B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)B′坐標(biāo)為(﹣1,﹣1),連結(jié)AB′交x軸于P點(diǎn),則PA+PB=PA+PB′=AB′,此時(shí)PA+PB的值最小,設(shè)直線AB′的解析式為y=kx+b,把A(﹣2,3),B′(﹣1,﹣1)代入得,,所以直線AB′的解析式為y=﹣4x﹣5,當(dāng)y=0時(shí),﹣4x﹣5=0,解得x=,所以此時(shí)點(diǎn)P的坐標(biāo)為(,0).

故答案為:(2,﹣3);(3,1);π;(,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知1微米=107米,則25微米用科學(xué)記數(shù)法表示為(
A.0.25×105
B.25×107
C.2.5×106
D.2.5×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若順次連接四邊形ABCD各邊的中點(diǎn)所得四邊形是矩形,則四邊形ABCD一定滿足(
A.對(duì)角線相等
B.對(duì)角線互相平分
C.對(duì)角線互相垂直
D.對(duì)角線相等且相互平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:4x2﹣16=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上表示數(shù) , , , 。并把這些數(shù)用“<”連接。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)價(jià)為每件200,按標(biāo)價(jià)打八折售出后每件可獲利40,則該商品的標(biāo)價(jià)為每件_______元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=90°,E為BC上一點(diǎn),A點(diǎn)和E點(diǎn)關(guān)于BD對(duì)稱,B點(diǎn)、C點(diǎn)關(guān)于DE對(duì)稱,求∠ABC和∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),平行于x軸的直線與拋物線L:相交于A,B兩點(diǎn)(點(diǎn)B在第一象限),點(diǎn)D在AB的延長線上.

(1)已知a=1,點(diǎn)B的縱坐標(biāo)為2.

①如圖1,向右平移拋物線L使該拋物線過點(diǎn)B,與AB的延長線交于點(diǎn)C,求AC的長.

②如圖2,若BD=AB,過點(diǎn)B,D的拋物線L2,其頂點(diǎn)M在x軸上,求該拋物線的函數(shù)表達(dá)式.

(2)如圖3,若BD=AB,過O,B,D三點(diǎn)的拋物線L3,頂點(diǎn)為P,對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)為a3,過點(diǎn)P作PE∥x軸,交拋物線L于E,F(xiàn)兩點(diǎn),求的值,并直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長線交線段OA于點(diǎn)H,連CH、CG.

(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,當(dāng)G點(diǎn)在何位置時(shí)四邊形AEBD是矩形?請(qǐng)說明理由并求出點(diǎn)H的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案