【題目】若一個等腰三角形的兩條邊的邊長之比3:2,則這個等腰三角形底角的正切值為

【答案】2
【解析】解:如圖,作AD⊥BC于點D, 則BD=CD= BC,

①若AB:BC=3:2,
設(shè)AB=3x,則BC=2x,
∴BD=x,
∴AD= = =2 x,
則tanB= = =2 ;
②若AB:BC=2:3,
設(shè)AB=2x,則BC=3x,
∴BD= x,
∴AD= = = x,
則tanB= = =
所以答案是:2
【考點精析】通過靈活運用等腰三角形的性質(zhì)和解直角三角形,掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在完全相同的四張卡片上分別寫有如下四個命題:①半圓所對的弦是直徑;②圓既是軸對稱圖形,也是中心對稱圖形;③弦的垂線一定經(jīng)過這條弦所在圓的圓心;④圓內(nèi)接四邊形的對角互補.把這四張卡片放入一個不透明的口袋內(nèi)攪勻,從口袋內(nèi)任取一張卡片,則取出卡片上的命題是真命題的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各題
(1)計算:(﹣2)2 (1+tan45°)
(2)先化簡,再求值: ,其中a= ﹣2,b= +2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B(3,3)在雙曲線y= (x>0)上,點D在雙曲線y=﹣ (x<0)上,點A和點C分別在x軸,y軸的正半軸上,且點A,B,C,D構(gòu)成的四邊形為正方形.
(1)求k的值;
(2)求點A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D為頂點的拋物線y=ax2+bx+c過點B.動點P從點D出發(fā),沿DC邊向點C運動,同時動點Q從點B出發(fā),沿BA邊向點A運動,點P、Q運動的速度均為每秒1個單位,運動的時間為t秒.過點P作PE⊥CD交BD于點E,過點E作EF⊥AD于點F,交拋物線于點G.

(1)求拋物線的解析式;
(2)當(dāng)t為何值時,四邊形BDGQ的面積最大?最大值為多少?
(3)動點P、Q運動過程中,在矩形ABCD內(nèi)(包括其邊界)是否存在點H,使以B,Q,E,H為頂點的四邊形是菱形,若存在,請直接寫出此時菱形的周長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABCD中,對角線AC與BD相交于點O,經(jīng)過點O的直線與邊AB相交于點E,與邊CD相交于點F.
(1)求證:OE=OF;
(2)如圖2,連接DE,BF,當(dāng)DE⊥AB時,在不添加其他輔助線的情況下,直接寫出腰長等于 BD的所有的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中點,P是BC邊上的一動點(P與B,C不重合),連接PM并延長交AD的延長線于Q.
(1)試說明△PCM≌△QDM.
(2)當(dāng)點P在點B、C之間運動到什么位置時,四邊形ABPQ是平行四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題
如圖1,等邊△ABC中,BC=4,點P從點B出發(fā),沿BC方向運動到點C,點P關(guān)于直線AB、AC的對稱點分別為點M、N,連接MN.

(1)【發(fā)現(xiàn)】
當(dāng)點P與點B重合時,線段MN的長是
當(dāng)AP的長最小時,線段MN的長是;
(2)【探究】
如圖2,設(shè)PB=x,MN2=y,連接PM、PN,分別交AB,AC于點D,E.
用含x的代數(shù)式表示PM= , PN=;
(3)求y關(guān)于x的函數(shù)關(guān)系式,并寫出y的取值范圍;
(4)當(dāng)點P在直線BC上的什么位置時,線段MN=3 (直接寫出答案)
(5)【拓展】
如圖3,求線段MN的中點K經(jīng)過的路線長.

(6)【應(yīng)用】
如圖4,在等腰△ABC中,∠BAC=30°,AB=AC,BC=2,點P、Q、R分別為邊BC、AB、AC上(均不與端點重合)的動點,則△PQR周長的最小值是
(可能用到的數(shù)值:sin75°= ,cos75°= ,tan75°=2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),拋物線 y=﹣ x2平移后過點A(8,0)和原點,頂點為B,對稱軸與x軸相交于點C,與原拋物線相交于點D.

(1)求平移后拋物線的解析式及點D的坐標(biāo);
(2)直接寫出陰影部分的面積 S陰影;
(3)如圖(2),直線AB與y軸相交于點P,點M為線段OA上一動點(點M不與點A,O重合 ),∠PMN為直角,MN與AP相交于點N,設(shè)OM=t,試探究:t為何值時,△MAN為等腰三角形?

查看答案和解析>>

同步練習(xí)冊答案