精英家教網 > 初中數學 > 題目詳情

【題目】為了了解某市九年級學生的體育成績(成績均為整數),隨機抽取了部分學生的體育成績并分段(A:20.5~22.5;B:22.5~24.5;C:24.5~26.5;D:26.5~28.5;E:28.5~30.5)統(tǒng)計如下,而且制成了如圖所示的不完整的統(tǒng)計圖.

體育成績統(tǒng)計表

分數段

頻數

頻率

A

12

0.05

B

36

a

C

84

0.35

D

b

0.25

E

48

0.20

體育成績統(tǒng)計圖

根據上面提供的信息,解答下列問題:

(1)在統(tǒng)計表中,a=________,b=________,并將統(tǒng)計圖補充完整;

(2)小明說:這組數據的眾數一定在C中.你認為小明的說法正確嗎?__________(正確錯誤”).

(3)若成績在27分以上(27)定為優(yōu)秀,則該市今年48 000名九年級學生中體育成績?yōu)閮?yōu)秀的學生約有多少?

【答案】(1) 0.15, 60;(2) 錯誤;(3)21 600.

【解析】

(1)根據A組有12人,對應的頻率是0.05即可求得總人數,然后根據百分比的意義求得a、b的值,進而補全直方圖;

(2)根據眾數的定義,以及每組中包含的整數只有兩個即可作出判斷;

(3)利用總人數48000乘以對應的頻率即可求解.

(1)調查的總人數是c=12÷0.05=240(人),

a==0.15,b=240×0.25=60,

;

(2)C組數據范圍是24.5~26.5,由于成績均為整數,所以C組的成績?yōu)?/span>2526,雖然C組人數最多,但是2526的人數不一定最多.

故答案是:錯誤;

(3)48000×(0.25+0.20)=21600(人),

即該市48000名九年級學生中體育成績?yōu)閮?yōu)秀的學生人數約有21600人.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】問題提出:某物業(yè)公司接收管理某小區(qū)后,準備進行綠化建設,現要將一塊四邊形的空地(如圖5,四邊形ABCD)鋪上草皮,但由于年代久遠,小區(qū)規(guī)劃書上該空地的面積數據看不清了,僅僅留下兩條對角線AC,BD的長度分別為20cm,30cm及夾角∠AOB60°,你能利用這些數據,幫助物業(yè)人員求出這塊空地的面積嗎?

問題顯然,要求四邊形ABCD的面積,只要求出ABDBCD(也可以是ABCACD)的面積,再相加就可以了.

建立模型:我們先來解決較簡單的三角形的情況:

如圖1,ABC中,OBC上任意一點(不與B,C兩點重合),連接OA,OA=a,BC=b,AOB=α(αOABC所夾較小的角),試用a,b,α表示ABC的面積.

解:如圖2,作AMBC于點M,

∴△AOM為直角三角形.

又∵∠AOB=α,sinα=AM=OAsinα

∴△ABC的面積=BCAM=BCOAsinα=absinα.

問題解決:請你利用上面的方法,解決物業(yè)公司的問題.

如圖3,四邊形ABCD中,O為對角線AC,BD的交點,已知AC=20m,BD=30m,AOB=60°,求四邊形ABCD的面積.(寫出輔助線作法和必要的解答過程)

新建模型:若四邊形ABCD中,O為對角線AC,BD的交點,已知AC=a,BD=b,AOB=α(αOABC所夾較小的角),直接寫出四邊形ABCD的面積=   

模型應用:如圖4,四邊形ABCD中,AB+CD=BC,ABC=BCD=60°,已知AC=a,則四邊形ABCD的面積為多少?(新建模型中的結論可直接利用)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解家長對學生在校帶手機現象的看法,某校九年級興趣小組隨機調查了該校學生家長若干名并對調查結果進行整理,繪制如下不完整的統(tǒng)計圖

請根據以上信息,解答下列問題

(1)這次接受調查的家長總人數為________人;

(2)在扇形統(tǒng)計圖中,很贊同所對應的扇形圓心角的度數

(3)若在這次接受調查的家長中,隨機抽出一名家長恰好抽到無所謂的家長概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線AB過點A(1,1)B(2,0),交y軸于點C,點D (0,n)在點C上方.連接ADBD

(1)求直線AB的關系式;

(2)求△ABD的面積;(用含n的代數式表示)

(3)SABD2時,作等腰直角三角形DBP,使DBDP,求出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某運動鞋經銷商隨機調查某校40名女生的運動鞋號碼,結果如下表:

鞋的號碼

35.5

36

36.5

37

37.5

人數

4

6

16

12

2

現在該經銷商要進200雙上述五種女運動鞋,你認為應該怎樣進貨比較合理?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 某校為了了解學生的安全意識,在全校范圍內隨機抽取部分學生進行問卷調查.根據調查結果,把學生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖,如圖所示:

根據以上信息,解答下列問題:

1)這次調查一共抽取了______名學生,將條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中,“較強”層次所占圓心角的大小為______°;

3)若該校有3200名學生,現要對安全意識為“淡薄”、“一般”的學生強化安全教育,根據調查結果,請你估計全校需要強化安全教育的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 先閱讀下面的材料,再解答下面的問題:如果兩個三角形的形狀相同,則稱這兩個三角形相似.如圖1,△ABC與△DEF形狀相同,則稱△ABC與△DEF相似,記作△ABC∽△DEF.那么,如何說明兩個三角形相似呢?我們可以用“兩角分別相等的三角形相似”加以說明.用數學語言表示為:

如圖1:在△ABC與△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF

請你利用上述定理解決下面的問題:

1)下列說法:①有一個角為50°的兩個等腰三角形相似;②有一個角為100°的兩個等腰三角形相似;③有一個銳角相等的兩個直角三角形相似;④兩個等邊三角形相似.其中正確的是______(填序號);

2)如圖2,已知ABCD,ADBC相交于點O,試說明△ABO∽△DCO;

3)如圖3,在平行四邊形ABCD中,EDC上一點,連接AEFAE上一點,且∠BFE=∠C,求證:△ABF∽△EAD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線 x軸交于點A(-1,0),點B(3,0),與y軸正半軸交于點C.

(1)拋物線的解析式為________;

(2)P為拋物線上一點,連結AC,PC,若∠PCO=3ACO,點P的坐標為________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知∠MAN=120°,點C是∠MAN的平分線AQ上的一個定點,點B,D分別在AN,AM上,連接BD

【發(fā)現】

1)如圖1,若∠ABC=ADC=90°,則∠BCD=   °,CBD   三角形;

【探索】

2)如圖2,若∠ABC+ADC=180°,請判斷CBD的形狀,并證明你的結論;

【應用】

3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點G,H分別在射線OEOF上,且PGH為等邊三角形,則滿足上述條件的PGH的個數一共有   .(只填序號)

2344個以上

查看答案和解析>>

同步練習冊答案