【題目】在數(shù)學(xué)興趣小組活動(dòng)中,小明將邊長(zhǎng)為2的正方形與邊長(zhǎng)為的正方形按如圖1方式放置,與在同一條直線上,與在同一條直線上.
(1)請(qǐng)你猜想與之間的數(shù)量與位置關(guān)系,并加以證明;
(2)在圖2中,若將正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)恰好落在線段上時(shí),求出的長(zhǎng);
(3)在圖3中,若將正方形繞點(diǎn)繼續(xù)逆時(shí)針旋轉(zhuǎn),且線段與線段相交于點(diǎn),寫(xiě)出與面積之和的最大值,并簡(jiǎn)要說(shuō)明理由.
【答案】(1),,其理由見(jiàn)解析;(2);(3)6
【解析】
(1)由四邊形ABCD與四邊形AEFG為正方形,利用正方形的性質(zhì)得到兩對(duì)邊相等,且?jiàn)A角相等,利用SAS得到三角形ADG與三角形ABE全等,利用全等三角形對(duì)應(yīng)角相等得∠AGD=∠AEB,如圖1所示,延長(zhǎng)EB交DG于點(diǎn)H,利用等角的余角相等得到∠DHE=90°,利用垂直的定義即可得DG⊥BE;
(2)由四邊形ABCD與四邊形AEFG為正方形,利用正方形的性質(zhì)得到兩對(duì)邊相等,且?jiàn)A角相等,利用SAS得到三角形ADG與三角形ABE全等,利用全等三角形對(duì)應(yīng)邊相等得到DG=BE,如圖2,連接交于,則=°=,在Rt△AMD中,求出AO的長(zhǎng),即為DO的長(zhǎng),根據(jù)勾股定理求出GO的長(zhǎng),進(jìn)而確定出DG的長(zhǎng),即為BE的長(zhǎng);
(3)△GHE和△BHD面積之和的最大值為6,理由為:對(duì)于△EGH,點(diǎn)H在以EG為直徑的圓上,即當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),△EGH的高最大;對(duì)于△BDH,點(diǎn)H在以BD為直徑的圓上,即當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),△BDH的高最大,即可確定出面積的最大值.
(1)
證明:,,其理由是:
在正方形和正方形中,
有,,,
∴≌,∴,,
∵,∴
延長(zhǎng)交于,則,
∴.
(2)
解:在正方形和正方形中,
有,,,
∴
∴≌,∴
連接交于,則,
∴,,
∴
∴
(3)
與面積之和的最大值為6,其理由是:
對(duì)于,長(zhǎng)一定,當(dāng)到的長(zhǎng)度最大時(shí),的面積最大,由(1)(2))△GHE和△BHD面積之和的最大值為6,理由為:
對(duì)于△EGH,點(diǎn)H在以EG為直徑的圓上,
∴當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),△EGH的高最大;
對(duì)于△BDH,點(diǎn)H在以BD為直徑的圓上,
∴當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),△BDH的高最大,
則△GHE和△BHD面積之和的最大值為2+4=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校要求200名學(xué)生進(jìn)行社會(huì)調(diào)查,每人必須完成3~6份報(bào)告,調(diào)查結(jié)束后隨機(jī)抽查了20名學(xué)生每人完成報(bào)告的份數(shù),并分為四類,A:3份;B:4份;C:5份;D:6份.將各類的人數(shù)繪制成扇形圖(如圖1)和尚未完整的條形圖(如圖2),回答下列問(wèn)題:
(1)請(qǐng)將條形統(tǒng)計(jì)圖2補(bǔ)充完整;
(2)寫(xiě)出這20名學(xué)生每天完成報(bào)告份數(shù)的眾數(shù)_____份和中位數(shù)_____份;
(3)在求出20名學(xué)生每人完成報(bào)告份數(shù)的平均數(shù)時(shí),小明是這樣分析的:
第一步:求平均數(shù)的公式是 =;
第二步:在該問(wèn)題中,n=4,x1=3,x2=4,x3=5,x4=6;
第三步:==4.5(份).
小明的分析對(duì)不對(duì)?如果對(duì),請(qǐng)說(shuō)明理由,如果不對(duì),請(qǐng)求出正確結(jié)果;
(4)現(xiàn)從“D類”的學(xué)生中隨機(jī)選出2人進(jìn)行采訪,若“D類”的學(xué)生中只有1名男生,則所選兩位同學(xué)中有男同學(xué)的概率是多少?請(qǐng)用列表法或樹(shù)狀圖的方法求解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)數(shù)學(xué)實(shí)踐能力考試選擇項(xiàng)目中,選擇數(shù)據(jù)收集項(xiàng)目和數(shù)據(jù)分析項(xiàng)目的學(xué)生比較多。為了解學(xué)生數(shù)據(jù)收集和數(shù)據(jù)分析的水平情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.收集數(shù)據(jù):從選擇數(shù)據(jù)收集和數(shù)據(jù)分析的學(xué)生中各隨機(jī)抽取16人,進(jìn)行了體育測(cè)試,測(cè)試成績(jī)(十分制)如下:
數(shù)據(jù)收集 | 10 | 9.5 | 9.5 | 10 | 8 | 9 | 9.5 | 9 | 7 | 10 | 4 | 5.5 | 10 | 7.9 | 9.5 | 10 |
數(shù)據(jù)分析 | 9.5 | 9 | 8.5 | 8.5 | 10 | 9.5 | 10 | 8 | 6 | 9.5 | 10 | 9.5 | 9 | 8.5 | 9.5 | 6 |
整理,描述數(shù)據(jù):按如下分?jǐn)?shù)段整理,描述這兩組樣本數(shù)據(jù):
10 | |||||
數(shù)據(jù)收集 | 1 | 1 | 3 | 6 | 5 |
數(shù)據(jù)分析 |
(說(shuō)明:成績(jī)8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格.)
分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù),中位數(shù),眾數(shù)如下表所示:
項(xiàng)目 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
數(shù)據(jù)收集 | 8.75 | 9.5 | 10 |
數(shù)據(jù)分析 | 8.81 | 9.25 | 9.5 |
得出結(jié)論:
(1)如果全校有480人選擇數(shù)據(jù)收集項(xiàng)目,達(dá)到優(yōu)秀的人數(shù)約為________人;
(2)初二年級(jí)的井航和凱舟看到上面數(shù)據(jù)后,井航說(shuō):數(shù)據(jù)分析項(xiàng)目整體水平較高.凱舟說(shuō):數(shù)據(jù)收集項(xiàng)目整體水平較高.你同意________的看法,理由為_______________________.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩站相距480千米,一輛快車(chē)從甲站出發(fā),每小時(shí)行駛120千米,一輛慢車(chē)從乙站出發(fā),每小時(shí)行駛80千米.
(1)兩車(chē)同時(shí)開(kāi)出,相向而行,多少小時(shí)后兩車(chē)相遇?
(2)兩車(chē)同時(shí)開(kāi)出,相向而行,多少小時(shí)后兩車(chē)相距100千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)是我國(guó)的傳統(tǒng)節(jié)日,為了調(diào)查學(xué)生對(duì)于各地春節(jié)民俗活動(dòng)的了解程度,某校抽取一部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果按“A:非常了解、B:基本了解、C:了解較少、D:不太了解”四類分別進(jìn)行統(tǒng)計(jì),并繪制出下面兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖的信息,解答下列問(wèn)題:
(1)此次共調(diào)查了_______個(gè)學(xué)生;
(2)扇形統(tǒng)計(jì)圖中,A所在的扇形的圓心角度數(shù)為多少?;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,每個(gè)小方格的頂點(diǎn)叫做格點(diǎn).
(1)畫(huà)出△ABC中AB邊上的中線CD;
(2)畫(huà)出△ABC向右平移3個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(3)圖中AC與A1C1的關(guān)系是 ;
(4)在圖中,能使S△ABQ=S△ABC的格點(diǎn)Q共有 個(gè),分別用Q1、Q2、…表示出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1, 在 中,,.點(diǎn)O是BC的中點(diǎn),點(diǎn)D沿B→A→C方向從B運(yùn)動(dòng)到C.設(shè)點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng)為,圖1中某條線段的長(zhǎng)為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是圖1中的 ( )
圖1 圖2
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期三個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次調(diào)查中,張老師一共調(diào)查了 名同學(xué),其中C類女生有 名,D類男生有 名;
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
(問(wèn)題情境)
在綜合與實(shí)踐課上,同學(xué)們以“矩形的折疊”為主題展開(kāi)數(shù)學(xué)活動(dòng),如圖1,在矩形紙片ABCD中,AB=4,BC=5,點(diǎn)E,F分別為邊AB,AD上的點(diǎn),且DF=3。
(操作發(fā)現(xiàn))
(1)沿CE折疊紙片,B點(diǎn)恰好與F點(diǎn)重合,求AE的長(zhǎng);
(2)如圖2,延長(zhǎng)EF交CD的延長(zhǎng)線于點(diǎn)M,請(qǐng)判斷△CEM的形狀,并說(shuō)明理由。
(深入思考)
(3)把圖2置于平面直角坐標(biāo)系中,如圖3,使D點(diǎn)與原點(diǎn)O重合,C點(diǎn)在x軸的負(fù)半軸上,將△CEM沿CE翻折,使點(diǎn)M落在點(diǎn)M′處.連接CM′,求點(diǎn)M′的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com