【題目】如圖,扇形AOB的圓心角為直角,邊長為1的正方形ODCF的頂點FD,C分別在OA,OB上,過點BBEFC,交FC的延長線于點E,則圖中陰影部分的面積等于__

【答案】

【解析】

如下圖,過點ADC的垂線,交DC延長線于點G,先推導出陰影部分CEB的面積等于ACG圍成圖形的面積,從而將圖形中陰影部分面積轉(zhuǎn)化為矩形AFCG的面積求解.

如下圖,過點ADC的垂線,交DC延長線于點G,連接OC

∵四邊形ODCF是正方形,邊長為1

∴∠AOC=COB=45°,OC=

∴點CAB的中點,OA=OB=OC=

由圖形可得:陰影部分CEB的面積等于ACG圍成圖形的面積

∴圖形陰影部分面積可轉(zhuǎn)化為矩形AFCG的面積

AF=OA-OF=FC=1

∴矩形AFCG的面積為:()×1=

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點P從點A出發(fā),以lcm/s的速度沿A→D→C方向勻速運動,同時點Q從點A出發(fā),以2cm/s的速度沿A→B→C方向勻速運動,當一個點到達點C時,另一個點也隨之停止.設(shè)運動時間為t(s),APQ的面積為S(cm2),下列能大致反映St之間函數(shù)關(guān)系的圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知y關(guān)于x的二次函數(shù)y=x-bx+b+b-5的圖象與x軸有兩個公共點.

1)求b的取值范圍;

2)若b取滿足條件的最大整數(shù)值,當m≤x≤時,函數(shù)y的取值范圍是n≤y≤6-2m,求m,n的值;

3)若在自變量x的值滿足b≤x≤b+3的情況下,對應函數(shù)y的最小值為,求此時二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線軸交于、,交軸于點

1)拋物線頂點的坐標為________

2)如圖2,連接.將沿軸方向以每秒1個單位長度的速度向右平移得到,運動時間為秒.當時,求重疊面積的函數(shù)解析式,并求出的最大值;

3)如圖3中,將繞點順時針旋轉(zhuǎn)一定的角度得到,邊與拋物線的對稱軸交于點.在旋轉(zhuǎn)過程中,是否存在一點,使得?若存在,直接寫出所有滿足條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于點,兩點,直線軸交于點,與軸交于點.點軸上方的拋物線上一動點,過點軸于點,交直線于點.設(shè)點的橫坐標為

1)求拋物線的解析式;

2)若,求的值;

3)若點是點關(guān)于直線OE的對稱點,是否存在點,使點落在上?若存在,請直接寫出相應的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,平行四邊形ABCD中,ABACAB3,AD5,點P在邊AD上運動,以P為圓心,PA為半徑的⊙P與對角線AC交于A,E兩點.

1)如圖2,當⊙P與邊CD相切于點F時,求AP的長;

2)不難發(fā)現(xiàn),當⊙P與邊CD相切時,⊙P與平行四邊形ABCD的邊有三個公共點,隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點的個數(shù)也在變化,若公共點的個數(shù)為4,直接寫出相對應的AP的值的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BM是以AB為直徑的⊙O的切線,B為切點,BC平分∠ABM,弦CDAB于點EDEOE

1)求證:ACB是等腰直角三角形;

2)求證:OA2OEDC

3)求tanACD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,過點AAHBC,分別交BDBC于點E,H,FED的中點,∠BAF120°,則∠C的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,∠C30°,過DDEBC于點E,延長CB至點F,使BFCE,連接AF.若AF4CF10,則ABCD的面積為_____

查看答案和解析>>

同步練習冊答案