【題目】如圖,扇形AOB的圓心角為直角,邊長(zhǎng)為1的正方形ODCF的頂點(diǎn)F,D,C分別在OA,OB,上,過(guò)點(diǎn)B作BE⊥FC,交FC的延長(zhǎng)線于點(diǎn)E,則圖中陰影部分的面積等于__.
【答案】
【解析】
如下圖,過(guò)點(diǎn)A作DC的垂線,交DC延長(zhǎng)線于點(diǎn)G,先推導(dǎo)出陰影部分CEB的面積等于ACG圍成圖形的面積,從而將圖形中陰影部分面積轉(zhuǎn)化為矩形AFCG的面積求解.
如下圖,過(guò)點(diǎn)A作DC的垂線,交DC延長(zhǎng)線于點(diǎn)G,連接OC
∵四邊形ODCF是正方形,邊長(zhǎng)為1
∴∠AOC=∠COB=45°,OC=
∴點(diǎn)C是AB的中點(diǎn),OA=OB=OC=
由圖形可得:陰影部分CEB的面積等于ACG圍成圖形的面積
∴圖形陰影部分面積可轉(zhuǎn)化為矩形AFCG的面積
AF=OA-OF=,FC=1
∴矩形AFCG的面積為:()×1=
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),以lcm/s的速度沿A→D→C方向勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),以2cm/s的速度沿A→B→C方向勻速運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)點(diǎn)C時(shí),另一個(gè)點(diǎn)也隨之停止.設(shè)運(yùn)動(dòng)時(shí)間為t(s),△APQ的面積為S(cm2),下列能大致反映S與t之間函數(shù)關(guān)系的圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y關(guān)于x的二次函數(shù)y=x-bx+b+b-5的圖象與x軸有兩個(gè)公共點(diǎn).
(1)求b的取值范圍;
(2)若b取滿足條件的最大整數(shù)值,當(dāng)m≤x≤時(shí),函數(shù)y的取值范圍是n≤y≤6-2m,求m,n的值;
(3)若在自變量x的值滿足b≤x≤b+3的情況下,對(duì)應(yīng)函數(shù)y的最小值為,求此時(shí)二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與軸交于、,交軸于點(diǎn).
(1)拋物線頂點(diǎn)的坐標(biāo)為________;
(2)如圖2,連接、.將沿軸方向以每秒1個(gè)單位長(zhǎng)度的速度向右平移得到,運(yùn)動(dòng)時(shí)間為秒.當(dāng)時(shí),求與重疊面積與的函數(shù)解析式,并求出的最大值;
(3)如圖3中,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)一定的角度得到,邊與拋物線的對(duì)稱(chēng)軸交于點(diǎn).在旋轉(zhuǎn)過(guò)程中,是否存在一點(diǎn),使得?若存在,直接寫(xiě)出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),兩點(diǎn),直線與軸交于點(diǎn),與軸交于點(diǎn).點(diǎn)是軸上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),交直線于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為.
(1)求拋物線的解析式;
(2)若,求的值;
(3)若點(diǎn)是點(diǎn)關(guān)于直線OE的對(duì)稱(chēng)點(diǎn),是否存在點(diǎn),使點(diǎn)落在上?若存在,請(qǐng)直接寫(xiě)出相應(yīng)的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平行四邊形ABCD中,AB⊥AC,AB=3,AD=5,點(diǎn)P在邊AD上運(yùn)動(dòng),以P為圓心,PA為半徑的⊙P與對(duì)角線AC交于A,E兩點(diǎn).
(1)如圖2,當(dāng)⊙P與邊CD相切于點(diǎn)F時(shí),求AP的長(zhǎng);
(2)不難發(fā)現(xiàn),當(dāng)⊙P與邊CD相切時(shí),⊙P與平行四邊形ABCD的邊有三個(gè)公共點(diǎn),隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點(diǎn)的個(gè)數(shù)也在變化,若公共點(diǎn)的個(gè)數(shù)為4,直接寫(xiě)出相對(duì)應(yīng)的AP的值的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BM是以AB為直徑的⊙O的切線,B為切點(diǎn),BC平分∠ABM,弦CD交AB于點(diǎn)E,DE=OE.
(1)求證:△ACB是等腰直角三角形;
(2)求證:OA2=OEDC:
(3)求tan∠ACD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,過(guò)點(diǎn)A作AH⊥BC,分別交BD,BC于點(diǎn)E,H,F為ED的中點(diǎn),∠BAF=120°,則∠C的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,∠C=30°,過(guò)D作DE⊥BC于點(diǎn)E,延長(zhǎng)CB至點(diǎn)F,使BF=CE,連接AF.若AF=4,CF=10,則ABCD的面積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com