【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過(guò)A(﹣3,0)、B(1,0)、C(0,3)三點(diǎn),其頂點(diǎn)為D,連接AD,點(diǎn)P是線段AD上一個(gè)動(dòng)點(diǎn)(不與A、D重合),過(guò)點(diǎn)P作y軸的垂線,垂足點(diǎn)為E,連接AE.

(1)求拋物線的函數(shù)解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)如果P點(diǎn)的坐標(biāo)為(x,y),△PAE的面積為S,求S與x之間的函數(shù)關(guān)系式,直接寫(xiě)出自變量x的取值范圍,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取到最大值時(shí),過(guò)點(diǎn)P作x軸的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′,求出P′的坐標(biāo),并判斷P′是否在該拋物線上.

【答案】
(1)解:∵拋物線y=ax2+bx+c經(jīng)過(guò)A(﹣3,0)、B(1,0)、C(0,3)三點(diǎn),

,

解得

∴解析式為y=﹣x2﹣2x+3

∵﹣x2﹣2x+3=﹣(x+1)2+4,

∴拋物線頂點(diǎn)坐標(biāo)D為(﹣1,4).


(2)解:∵A(﹣3,0),D(﹣1,4),

∴設(shè)AD為解析式為y=kx+b,有 ,

解得 ,

∴AD解析式:y=2x+6,

∵P在AD上,

∴P(x,2x+6),

∴SAPE= PEyP= (﹣x)(2x+6)=﹣x2﹣3x(﹣3<x<﹣1),當(dāng)x=﹣ =﹣ 時(shí),S取最大值


(3)解:如圖1,設(shè)P′F與y軸交于點(diǎn)N,過(guò)P′作P′M⊥y軸于點(diǎn)M,

∵△PEF沿EF翻折得△P′EF,且P(﹣ ,3),

∴∠PFE=∠P′FE,PF=P′F=3,PE=P′E= ,

∵PF∥y軸,

∴∠PFE=∠FEN,

∵∠PFE=∠P′FE,

∴∠FEN=∠P′FE,

∴EN=FN,

設(shè)EN=m,則FN=m,P′N(xiāo)=3﹣m.

在Rt△P′EN中,

∵(3﹣m)2+( 2=m2,

∴m=

∵S△P′EN= P′N(xiāo)P′E= ENP′M,

∴P′M=

在Rt△EMP′中,

∵EM= =

∴OM=EO﹣EM= ,

∴P′( , ).

當(dāng)x= 時(shí),y=﹣( 2﹣2 +3= ,

∴點(diǎn)P′不在該拋物線上.


【解析】(1)利用待定系數(shù)法把A、B、C三點(diǎn)坐標(biāo)代入解析式,求出a、b、c即可;(2)由于P在AD上運(yùn)動(dòng),須求出AD的解析式,設(shè)出P的橫坐標(biāo)為x,用x的代數(shù)式分別表示P的縱坐標(biāo)、PE長(zhǎng),代入三角形面積公式,構(gòu)建函數(shù),用配方法求出最值;(3)利用折疊的性質(zhì)得出對(duì)應(yīng)邊相等,設(shè)EN=m,用m的代數(shù)式分別表示P' 坐標(biāo),將橫坐標(biāo)代入解析式,所求出的結(jié)果是否等于P'的縱坐標(biāo)可判斷出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,鐵路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DAABACBABB,已知DA15km,CB10km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C、D兩村到E站的距離相等,則E站應(yīng)建在距A站多少千米處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期三個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類(lèi),A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

(1)本次調(diào)查中,張老師一共調(diào)查了 名同學(xué),其中C類(lèi)女生有 名,D類(lèi)男生有 名;

(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類(lèi)和D類(lèi)學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,是一個(gè)長(zhǎng)為 2m,寬為 2n 的長(zhǎng)方形,沿圖中虛線用剪刀將其均分成四個(gè)完全相同的小長(zhǎng)方形,然后按圖 2 的形狀拼圖.

(1) 2 中的圖形陰影部分的邊長(zhǎng)為 ;(用含 m、n 的代數(shù)式表示)

(2)請(qǐng)你用兩種不同的方法分別求圖 2 中陰影部分的面積; 方法一: 方法二:

(3)觀察圖 2,請(qǐng)寫(xiě)出代數(shù)式(m+n)2、(m﹣n)2、4mn 之間的關(guān)系式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在直線跑道上同起點(diǎn)、同終點(diǎn)、同方向勻速跑步500米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)2秒.在跑步過(guò)程中,甲、乙兩人的距離y(米)與乙出發(fā)的時(shí)間t(秒)之間的關(guān)系如圖所示,給出以下結(jié)論:①a=8;②b=92;③c=123.其中正確的是( )

A.①②③
B.僅有①②
C.僅有①③
D.僅有②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】[感知]

如圖①,△ABC是等邊三角形,D是邊BC上一點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),作∠EDF=60°,使角的兩邊分別交邊AB、AC于點(diǎn)E、F,且BD=CF.若DEBC,則∠DFC的大小是   度;

[探究]

如圖②,△ABC是等邊三角形,D是邊BC上一點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),作∠EDF=60°,使角的兩邊分別交邊AB、AC于點(diǎn)EF,且BD=CF.求證:BE=CD;

[應(yīng)用]

在圖③中,若D是邊BC的中點(diǎn),且AB=2,其它條件不變,如圖③所示,則四邊形AEDF的周長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形ABCD中,AB=2 ,AC是對(duì)角線,∠B=60°,點(diǎn)E在BC邊上,點(diǎn)F在DC邊上,且∠EAF=60°,AE與DC的延長(zhǎng)線交于點(diǎn)M,AF與BC的延長(zhǎng)線交于點(diǎn)N.

(1)如圖1,若點(diǎn)E為BC邊上的中點(diǎn).
①求證:△ACM≌△ACN;
(2)如圖2,若點(diǎn)E為BC邊上的任意點(diǎn)(不與點(diǎn)B,C重合),請(qǐng)說(shuō)明CMNC是一個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩種商品原來(lái)的單價(jià)和為100元因市場(chǎng)變化,甲商品降價(jià)10%,乙商品提價(jià)40%,調(diào)價(jià)后兩種商品的單價(jià)和比原來(lái)的單價(jià)和提高了20%甲、乙兩種商品原來(lái)的單價(jià)各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k0)的圖象經(jīng)過(guò)點(diǎn)(1,0)和(0,2).

(1)當(dāng)﹣2x3時(shí),求y的取值范圍;

(2)已知點(diǎn)P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案