【題目】如圖是一個(gè)長(zhǎng)方體紙盒的平面展開(kāi)圖,已知紙盒中相對(duì)兩個(gè)面上的數(shù)互為相反數(shù).
填空: , , ;
先化簡(jiǎn), 再求值:.
【答案】(1)a= 1,b=﹣2,c=﹣3;(2)2abc,12
【解析】
(1)先根據(jù)長(zhǎng)方體的平面展開(kāi)圖確定a、b、c所對(duì)的面的數(shù)字,再根據(jù)相對(duì)的兩個(gè)面上的數(shù)互為相反數(shù),確定a、b、c的值;
(2)化簡(jiǎn)代數(shù)式后代入求值.
解:(1)由長(zhǎng)方體紙盒的平面展開(kāi)圖知,a與-1、b與2、c與3是相對(duì)的兩個(gè)面上的數(shù)字或字母,
因?yàn)橄鄬?duì)的兩個(gè)面上的數(shù)互為相反數(shù),
所以a=1,b=-2,c=-3.
故答案為:1,-2,-3.
(2)原式=5a2b﹣[2a2b﹣6abc+3a2b+4abc]
=5a2b﹣2a2b+6abc﹣3a2b﹣4abc
=5a2b﹣2a2b﹣3a2b+6abc﹣4abc
=2abc.
當(dāng)a=1,b=﹣2,c=﹣3時(shí),代入,
原式=2×1×(﹣2)×(﹣3)=12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,DH⊥BC于H交BE于G.下列結(jié)論:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正確的個(gè)數(shù)是( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+2的圖象與x軸,y軸分別交于點(diǎn)A,B,與正比例函數(shù)y=x交于點(diǎn)C,已知點(diǎn)C的橫坐標(biāo)為2,下列結(jié)論:①關(guān)于x的方程kx+2=0的解為x=3;②對(duì)于直線(xiàn)y=kx+2,當(dāng)x<3時(shí),y>0;③對(duì)于直線(xiàn)y=kx+2,當(dāng)x>0時(shí),y>2;④方程組的解為,其中正確的是( 。
A. ①②③B. ①②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y= 的圖象在第二、四象限,一次函數(shù)為y=kx+b(b>0),直線(xiàn)x=1與x軸交于點(diǎn)B,與直線(xiàn)y=kx+b交于點(diǎn)A,直線(xiàn)x=3與x軸交于點(diǎn)C,與直線(xiàn)y=kx+b交于點(diǎn)D.點(diǎn)A,D都在第一象限,直線(xiàn)y=kx+b與x軸交于點(diǎn)E,與y軸交于點(diǎn)F
(1)當(dāng) = 且△OFE的面積等于 時(shí),求這個(gè)一次函數(shù)的解析式;
(2)在(1)的條件下,根據(jù)函數(shù)圖象,試求不等式 >kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn) A 、B分別在反比例函數(shù) 的圖象上,且OA ⊥OB ,則 的值為( )
A.
B.2
C.
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合,研究數(shù)軸我們發(fā)現(xiàn):若數(shù)軸上點(diǎn)A、點(diǎn)B表示的數(shù)分別為a、b,則A,B兩點(diǎn)之間的距離AB=|a﹣b|,線(xiàn)段AB的中點(diǎn)表示的數(shù)為.如:如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B表示的數(shù)為8,則A、兩點(diǎn)間的距離AB=|﹣2﹣8|=10,線(xiàn)段AB的中點(diǎn)C表示的數(shù)為=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為 ,點(diǎn)Q表示的數(shù)為 .
(2)求當(dāng)t為何值時(shí),P、Q兩點(diǎn)相遇,并寫(xiě)出相遇點(diǎn)所表示的數(shù);
(3)求當(dāng)t為何值時(shí),PQ=AB;
(4)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線(xiàn)段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出線(xiàn)段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)用4個(gè)全等的直角三角形拼成如圖所示“弦圖”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,請(qǐng)你利用這個(gè)圖形解決下列問(wèn)題:
(1)試說(shuō)明a2+b2=c2;
(2)如果大正方形的面積是6,小正方形的面積是2,求(a+b)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(-2.3)、B(-6,0)、C(-1,0)
(1) 將△ABC繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)180°,畫(huà)出圖形,并寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A′ 的坐標(biāo)________;
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,
直接寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A″的坐標(biāo)___________;
(3)請(qǐng)直接寫(xiě)出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:
(1)畫(huà)線(xiàn)段AD∥BC且使AD=BC,連接CD;
(2)線(xiàn)段AC的長(zhǎng)為___,CD的長(zhǎng)為___,AD的長(zhǎng)為___.
(3)試判斷△ACD的形狀,并求四邊形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com