【題目】如圖,的直徑為,點(diǎn)在圓周上(異于,),.
(1)若,,求圖中扇形的面積.
(2)若是的平分線,求證:直線是的切線.
【答案】(1);(2)證明見解析.
【解析】
(1)根據(jù)圓周角定理確定圓心角,然后運(yùn)用扇形的面積公式即可;
(2)先根據(jù)角平分線的性質(zhì)和相似三角形的知識(shí)得到∠OCA=∠CAD,OC//AD;再根據(jù)AD⊥CD ,得到OC⊥CD即可證明結(jié)論.
解:(1),
,
,
;
(2)證明:∵AC是∠DAB的角平分線
∴∠OAC=∠DAC
∵OA=OC
∴∠0AC=∠OCA
∴∠DAC=∠OCA
∴OC//AD
又∵AD⊥DC.
∴OC⊥CD
∴DC是00的切線.
本題主要考查的是圓周角定理、求扇形的面積、切線的判定方法,掌握切線的判定方法是解答本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以頂點(diǎn)為圓心,適當(dāng)長為半徑畫弧,分別交邊于點(diǎn);再分別以為圓心,以大于為半徑作弧,兩弧在內(nèi)交于點(diǎn);作射線交邊于點(diǎn)若,則的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(1,0),點(diǎn)B在拋物線y=ax2+ax2上.
(1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;拋物線的解析式為 ;
(2)設(shè)拋物線的頂點(diǎn)為D,求△DBC的面積;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABC中,∠C=90°,AC=6,AB=10,點(diǎn)O在BC邊的中線AD上,OB 平分∠ABC,⊙O與BC相切于點(diǎn)E.
(1)求證:AB為⊙O的切線;
(2)求⊙O的半徑;
(3)求tan∠BAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸交于兩點(diǎn),與反比例函數(shù)的圖象交于點(diǎn),過點(diǎn)作軸,垂足為,連接.已知.
(1)如果,求的值;
(2)試探究與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著國內(nèi)疫情基本得到控制,旅游業(yè)也慢慢復(fù)蘇,經(jīng)市場調(diào)研發(fā)現(xiàn)旅游景點(diǎn)未來天內(nèi),旅游人數(shù)與時(shí)間的關(guān)系如下表;每張門票與時(shí)間之間存在如下圖所示的一次函數(shù)關(guān)系.(,且為整數(shù))
時(shí)間(天) | |||||
人數(shù)(人) |
<>
請結(jié)合上述信息解決下列問題:
(1)直接寫出:關(guān)于的函數(shù)關(guān)系式是 .與時(shí)間函數(shù)關(guān)系式是 .
(2)請預(yù)測未來天中哪一天的門票收入最多,最多是多少?
(3)為支援武漢抗疫,該旅游景點(diǎn)決定從每天獲得的門票收入中拿出元捐贈(zèng)給武漢紅十字會(huì),求捐款后共有幾天每天剩余門票收入不低于元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】參照學(xué)習(xí)函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因?yàn)?/span>,即,所以我們對比函數(shù)來探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
… | 1 | 2 | 4 | -4 | -2 | -1 | <> | … | |||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
描點(diǎn):在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn)如圖所示:
(1)請把軸左邊各點(diǎn)和右邊各點(diǎn)分別用一條光滑曲線,順次連接起來;
(2)觀察圖象并分析表格,回答下列問題:
①當(dāng)時(shí),隨的增大而______;(“增大”或“減小”)
②的圖象是由的圖象向______平移______個(gè)單位而得到的;
③圖象關(guān)于點(diǎn)______中心對稱.(填點(diǎn)的坐標(biāo))
(3)函數(shù)與直線交于點(diǎn),,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,半徑OA⊥OB,過OA的中點(diǎn)C作FD∥OB交⊙O于D、F兩點(diǎn),且CD=,以O為圓心,OC為半徑作,交OB于E點(diǎn).則圖中陰影部分的面積為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過點(diǎn)A(,0),其對稱軸為直線,則下列結(jié)論錯(cuò)誤的是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com