【題目】如圖,拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(﹣10),B20)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是拋物線上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m0m2).連接AC,BC,DBDC

1)求拋物線的函數(shù)表達(dá)式;

2)△BCD的面積何時(shí)最大?求出此時(shí)D點(diǎn)的坐標(biāo)和最大面積;

3)在(2)的條件下,若點(diǎn)Mx軸上一動(dòng)點(diǎn),點(diǎn)N是拋物線上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2)當(dāng)m=1,△BCD面積最大為,此時(shí)D點(diǎn)為(13);(3)存在,點(diǎn)N的坐標(biāo)為:(0,3)或(,﹣3)或(,﹣3

【解析】

1)由拋物線交點(diǎn)式表達(dá)式得:y=ax+1)(x2),將(0,3)代入上式,即可求解;

2)過(guò)點(diǎn)Dy軸的平行線交直線BC與點(diǎn)H,由SBDC=SDHC+SHDB=HD×OB,即可求解;

3)分BD是平行四邊形的一條邊、BD是平行四邊形的對(duì)角線兩種情況,分別求解即可.

解:(1)由拋物線交點(diǎn)式表達(dá)式得:y=ax+1)(x2),

將(0,3)代入上式得:﹣2a=3,解得:a=,

故拋物線的表達(dá)式為:;

2)點(diǎn)C03),B2,0),

設(shè)直線BC的表達(dá)式為:y=kx+n,則,解得:,

故直線BC的表達(dá)式為:,

如圖所示,過(guò)點(diǎn)Dy軸的平行線交直線BC與點(diǎn)H,

設(shè)點(diǎn)Dm,),則點(diǎn)Hm,m+3),

SBDC=SDHC+SHDB=HD×OB=

∵﹣0,故△BCD的面積有最大值,

當(dāng)m=1,△BCD面積最大為,此時(shí)D點(diǎn)為(1,3);

3m=1時(shí),D點(diǎn)為(1,3),

①當(dāng)BD是平行四邊形的一條邊時(shí),

設(shè)點(diǎn)Nn,),

則點(diǎn)N的縱坐標(biāo)為絕對(duì)值為3,

,

解得:n=01(舍去)或

故點(diǎn)N的坐標(biāo)為(0,3)或(,﹣3)或(,﹣3),

②當(dāng)BD是平行四邊形的對(duì)角線時(shí),

設(shè)點(diǎn)M(z,0),點(diǎn)N(s,t),

由中點(diǎn)坐標(biāo)公式得:,解得t=3,

,解得s=0s=1(舍去),

N的坐標(biāo)為(0,3);

綜上,點(diǎn)N的坐標(biāo)為:(03)或(,﹣3)或(,﹣3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線直線與雙曲線交于A、B兩點(diǎn),與x軸交于點(diǎn)C,點(diǎn)A的縱坐標(biāo)為6,點(diǎn)B的坐標(biāo)為(﹣3,﹣2).

(1)求直線和雙曲線的解析式;

(2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象直接寫出時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),,點(diǎn)A的坐標(biāo)是,把繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)后,得到,則的外接圓圓心坐標(biāo)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】418日,一年一度的風(fēng)箏節(jié)活動(dòng)在市政廣場(chǎng)舉行,如圖,廣場(chǎng)上有一風(fēng)箏A,小江抓著風(fēng)箏線的一端站在D處,他從牽引端E測(cè)得風(fēng)箏A的仰角為67°,同一時(shí)刻小蕓在附近一座距地面30米高(BC30)的居民樓頂B處測(cè)得風(fēng)箏A的仰角是45°,已知小江與居民樓的距離CD40米,牽引端距地面高度DE1.5米,根據(jù)以上條件計(jì)算風(fēng)箏距地面的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):sin67°≈,cos67°≈tan67°≈,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),過(guò)點(diǎn)OODAB,交BC的延長(zhǎng)線于D,交AC于點(diǎn)E,FDE的中點(diǎn),連接CF

1)求證:CF是⊙O的切線.

2)若∠A22.5°,求證:ACDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】湘潭市繼2017年成功創(chuàng)建全國(guó)文明城市之后,又準(zhǔn)備爭(zhēng)創(chuàng)全國(guó)衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購(gòu)買2個(gè)溫馨提示牌和3個(gè)垃圾箱共需550元,且垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.

(1)求溫馨提示牌和垃圾箱的單價(jià)各是多少元?

(2)該小區(qū)至少需要安放48個(gè)垃圾箱,如果購(gòu)買溫馨提示牌和垃圾箱共100個(gè),且費(fèi)用不超過(guò)10000元,請(qǐng)你列舉出所有購(gòu)買方案,并指出哪種方案所需資金最少?最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,∠B=30°,ABAC,O是兩條對(duì)角線的交點(diǎn),過(guò)點(diǎn)OAC的垂線分別交邊ADBC于點(diǎn)E,F,點(diǎn)M是邊AB的一個(gè)三等分點(diǎn).連接MF,則△AOE與△BMF的面積比為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖AB是圓O的直徑,射線AMAB于點(diǎn)A.點(diǎn)DAM上,連接OD交圓O于點(diǎn)E,過(guò)點(diǎn)DDC=DA.交圓O于點(diǎn)CA,C不重合),連接BC,CE

1)求證:CD是圓O的切線;

2)若四邊形OECB是菱形,圓O的直徑AB=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如今很多初中生喜歡購(gòu)頭飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此某班數(shù)學(xué)興趣小組對(duì)本班同學(xué)一天飲用飲品的情況進(jìn)行了調(diào)查,大致可分為四種:A.白開水,B.瓶裝礦泉水,C.碳酸飲料,D.非碳酸飲料.根據(jù)統(tǒng)計(jì)結(jié)果繪制如下兩個(gè)統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題

1)這個(gè)班級(jí)有多少名同學(xué)?并補(bǔ)全條形統(tǒng)計(jì)圖;

2)若該班同學(xué)每人每天只飲用一種飲品(每種僅限一瓶,價(jià)格如下表),則該班同學(xué)每天用于飲品的人均花費(fèi)是多少元?

飲品名稱

白開水

瓶裝礦泉水

碳酸飲料

非碳酸飲料

平均價(jià)格(元/瓶)

0

2

3

4

3)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在飲用白開水的5名班委干部(其中有兩位班長(zhǎng)記為A,B,其余三位記為C,D,E)中隨機(jī)抽取2名班委干部作良好習(xí)慣監(jiān)督員,請(qǐng)用列表法或畫樹狀圖的方法求出恰好抽到2名班長(zhǎng)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案