設(shè)x1,x2是關(guān)于x的一元二次方程x2+2ax+a2+4a-2=0的兩實(shí)根,的最小值是   
【答案】分析:根據(jù)根與系數(shù)的關(guān)系得x1+x2=-2a,x1•x2=a2+4a-2,再變形得到=(x1+x22-2x1•x2,再把x1+x2=-2a,x1•x2=a2+4a-2代入得到=(-2a)2-2(a2+4a-2),整理得2a2-8a+4,配方得到2(a-2)2-4,由于2(a-2)2≥0,即可得到的最小值為-4.
解答:解:根據(jù)題意得x1+x2=-2a,x1•x2=a2+4a-2,
=(x1+x22-2x1•x2
=(-2a)2-2(a2+4a-2)
=2a2-8a+4
=2(a-2)2-4,
∵2(a-2)2≥0,
≥0,
的最小值為0.
故答案為0.
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程的兩根為x1,x2,則x1+x2=-,x1•x2=.也考查了非負(fù)數(shù)的性質(zhì)以及配方法的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、設(shè)x1、x2是關(guān)于x的一元二次方程x2+ax+a+3=0的兩個(gè)實(shí)數(shù)根,則x12+x22的最小值為
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x1、x2是關(guān)于x的一元二次方程x2+ax+a=2的兩個(gè)實(shí)數(shù)根,則(x1-2x2)(x2-2x1)的最大值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x1,x2是關(guān)于x的一元二次方程x2+x+n-2=mx的兩個(gè)實(shí)數(shù)根,且x1<0,x2-3x1<0,則( 。
A、
m>1
n>2
B、
m>1
n<2
C、
m<1
n>2
D、
m<1
n<2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x1,x2是關(guān)于x的一元二次方程x2+2ax+a2+4a-2=0的兩實(shí)根,當(dāng)a為何值時(shí),x12+x22有最小值?最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、設(shè)x1、x2是關(guān)于x的方程x2-4x+k+1=0的兩個(gè)實(shí)數(shù)根.問(wèn):是否存在實(shí)數(shù)k,使得3x1•x2-x1>x2成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案