【題目】下面是小東設(shè)計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.
已知:直線l及直線l外一點P.
求作:直線,使得.
作法:如圖,
①任意取一點K,使點K和點P在直線l的兩旁;
②以P為圓心,長為半徑畫弧,交l于點,連接;
③分別以點為圓心,以長為半徑畫弧,兩弧相交于點Q(點Q和點A在直線的兩旁);
④作直線.
所以直線就是所求作的直線.
根據(jù)小東設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:連接,
______,______,
四邊形是平行四邊形(__________)(填推理依據(jù)).
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺AB型電子產(chǎn)品的總?cè)蝿?wù).已知每臺AB型產(chǎn)品由4個A型裝置和3個B型裝置配套組成.工廠現(xiàn)有80名工人,每個工人每天能加工6個A型裝置或3個B型裝置.工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的A、B型裝置數(shù)量正好全部配套組成AB型產(chǎn)品.為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補充一些新工人,這些新工人只能獨立進行A型裝置的加工,且每人每天只能加工4個A型裝置.
(1)設(shè)原來每天安排x名工人生產(chǎn)A型裝置,后來補充m名新工人,求x的值(用含m的代數(shù)式表示)
(2)請問至少需要補充多少名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿?wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將放在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均落在格點上.
Ⅰ的面積等于______;
Ⅱ若四邊形DEFG是中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法不要求證明________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為緩解某學(xué)校大班額現(xiàn)狀,某市決定通過新建學(xué)校來解決該問題.經(jīng)測算,建設(shè)6個小學(xué),5個中學(xué),需費用13800萬元,建設(shè)10個小學(xué),7個中學(xué),需花費20600萬元.
(1)求建設(shè)一個小學(xué),一個中學(xué)各需多少費用.
(2)該市共計劃建設(shè)中小學(xué)80所,其中小學(xué)的建設(shè)數(shù)量不超過中學(xué)建設(shè)數(shù)量的1.5倍.設(shè)建設(shè)小學(xué)的數(shù)量為x個,建設(shè)中小學(xué)校的總費用為y萬元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②如何安排中小學(xué)的建設(shè)數(shù)量,才能使建設(shè)總費用最低?
(3)受國家開放二胎政策及外來務(wù)工子女就讀的影響,預(yù)計在小學(xué)就讀人數(shù)會有明顯增加,現(xiàn)決定在(2)中所定的方案上增加投資以擴大小學(xué)的就讀規(guī)模,若建設(shè)小學(xué)總費用不超過建設(shè)中學(xué)的總費用,則每所小學(xué)最多可增加多少費用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵下崗工人再就業(yè),某地市政府規(guī)定,企業(yè)按成本價提供產(chǎn)品給下崗人員自主銷售,成本價與出廠價之間的差價由政府承擔(dān).老李按照政策投資銷售本市生產(chǎn)的一種兒童面條.已知這種兒童面條的成本價為每袋12元,出廠價為每袋16元,每天銷售量(袋)與銷售單價(元)之間的關(guān)系近似滿足一次函數(shù):.
(1)老李在開始創(chuàng)業(yè)的第1天將銷售單價定為17元,那么政府這一天為他承擔(dān)的總差價為多少元?
(2)設(shè)老李獲得的利潤為(元),當(dāng)銷售單價為多少元時,每天可獲得最大利潤?
(3)物價部門規(guī)定,這種面條的銷售單價不得高于24元,如果老李想要每天獲得的利潤不低于216元,那么政府每天為他承擔(dān)的總差價最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的點P和圖形M,給出如下定義:Q為圖形M上任意一點,如果兩點間的距離有最大值,那么稱這個最大值為點P與圖形M間的開距離,記作.已知直線與x軸交于點A,與y軸交于點B,的半徑為1.
(1)若,
①求的值;
②若點C在直線上,求的最小值;
(2)以點A為中心,將線段順時針旋轉(zhuǎn)得到,點E在線段組成的圖形上,若對于任意點E,總有,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在中,,,點分別是的中點,過點作直線的垂線段垂足為.點是直線上一動點,作使,連接.
(1)觀察猜想:如圖(2),當(dāng)點與點重合時,則的值為 .
(2)問題探究:如圖(1),當(dāng)點與點不重合時,請求出的值及兩直線夾角銳角的度數(shù),并說明理由
(3)問題解決:如圖(3),當(dāng)點在同一直線上時,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中的三點A(1,0),B(-1,0),P(0,-1),將線段AB沿y軸向上平移m(m>0)個單位長度,得到線段CD,二次函數(shù)y=a(x-h)2+k的圖象經(jīng)過點P,C,D.
(1)當(dāng)m=1時,a=______;當(dāng)m=2時,a=______;
(2)猜想a與m的關(guān)系,并證明你的猜想;
(3)將線段AB沿y軸向上平移n(n>0)個單位長度,得到線段C1D1,點C1,D1分別與點A,B對應(yīng),二次函數(shù)y=2a(x-h)2+k的圖象經(jīng)過點P,C1,D1.
①求n與m之間的關(guān)系;
②當(dāng)△COD1是直角三角形時,直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)利用數(shù)學(xué)知識測量建筑物DEFG的高度.他從點出發(fā)沿著坡度為的斜坡AB步行26米到達(dá)點B處,用測角儀測得建筑物頂端的仰角為37°,建筑物底端的俯角為30°,若AF為水平的地面,側(cè)角儀豎直放置,其高度BC=1.6米,則此建筑物的高度DE約為(精確到米,參考數(shù)據(jù):,)( )
A.米B.米C.米D.米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com