【題目】對于平面直角坐標(biāo)系中的點(diǎn)P和圖形M,給出如下定義:Q為圖形M上任意一點(diǎn),如果兩點(diǎn)間的距離有最大值,那么稱這個最大值為點(diǎn)P與圖形M間的開距離,記作.已知直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,的半徑為1.
(1)若,
①求的值;
②若點(diǎn)C在直線上,求的最小值;
(2)以點(diǎn)A為中心,將線段順時針旋轉(zhuǎn)得到,點(diǎn)E在線段組成的圖形上,若對于任意點(diǎn)E,總有,直接寫出b的取值范圍.
【答案】(1)①3;②;(2)或
【解析】
(1)①直接利用圓外一點(diǎn)到圓上的一點(diǎn)的最大距離,即可得出結(jié)論;
②先判斷出OC⊥AB時,OC最短,即可得出結(jié)論;
(2)Ⅰ、當(dāng)b>0時,當(dāng)直線AB與⊙O相切時,d(E,⊙O)最小,當(dāng)點(diǎn)E恰好在點(diǎn)D時,d(E,⊙O)最大,即可得出結(jié)論;
Ⅱ、當(dāng)b<0時,同Ⅰ的方法即可得結(jié)論.
解:(1)①根據(jù)題意可知.
.
②如圖,過點(diǎn)O作于點(diǎn)C,此時取得最小值.
直線與x軸交于點(diǎn)A,
.
.
.
.
的最小值為.
(2)或
Ⅰ、當(dāng)b>0時,如圖2,
針對于直線y=x+b(b≠0),
令x=0,則y=b,
∴B(0,b),
∴OB=b,
令y=0,則0=x+b,
∴x=b,
∴A(b,0),
∴OA=b,
則AB=2b,tan∠OAB==,
∴∠OAB=30°,
由旋轉(zhuǎn)知,AD=AB=2b,∠BAD=120°,
則有∠OAD=90°,
連接OD,
∴OD==b,
∵⊙O的半徑為1,
∴當(dāng)線段AB與⊙O相切時,d(E,⊙O)最小=2,
同(1)的方法得,OF==1,
∴b=(舍去負(fù)值),
對于任意點(diǎn)E,總有2≤d(E,⊙O)<6,
∴b<6-1,
∴b<,
即≤b<;
Ⅱ、當(dāng)b<0時,如圖3,
同Ⅰ的方法得,-<b≤-,
綜上述,-<b≤-或≤b<.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BCCF=2HE.其中正確的結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交CE的延長線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:D是BC的中點(diǎn);
(2)若BA⊥AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,,點(diǎn)是對角線上一動點(diǎn),將線段繞點(diǎn)順時針旋轉(zhuǎn)120°到,連接,連接并延長,分別交于點(diǎn).
(1)求證:;
(2)已知,若的最小值為,求菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計的“過直線外一點(diǎn)作這條直線的平行線”的尺規(guī)作圖過程.
已知:直線l及直線l外一點(diǎn)P.
求作:直線,使得.
作法:如圖,
①任意取一點(diǎn)K,使點(diǎn)K和點(diǎn)P在直線l的兩旁;
②以P為圓心,長為半徑畫弧,交l于點(diǎn),連接;
③分別以點(diǎn)為圓心,以長為半徑畫弧,兩弧相交于點(diǎn)Q(點(diǎn)Q和點(diǎn)A在直線的兩旁);
④作直線.
所以直線就是所求作的直線.
根據(jù)小東設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:連接,
______,______,
四邊形是平行四邊形(__________)(填推理依據(jù)).
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年初,新冠肺炎肆虐全球.我國政府和人民采取了積極有效的防疫措施,疫情在我國得到了有效控制.小明為復(fù)學(xué)到藥店購買口罩和一次性醫(yī)用口罩.已知購買個口罩和個一次性醫(yī)用口罩共需元;購買個口罩和個一次性醫(yī)用罩共需元.
(1)求口罩與一次性醫(yī)用口罩的單價;
(2)小明準(zhǔn)備購買口罩和一次性醫(yī)用口罩共個,且口罩的數(shù)量不少于一次性醫(yī)用口罩?jǐn)?shù)量的.請設(shè)計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象過Rt△ABO斜邊OB的中點(diǎn)D,與直角邊AB相交于點(diǎn)C,連接AD,OC.若△ABO的周長為,AD=2,則△ACO的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),與軸交于點(diǎn),點(diǎn)是拋物線的頂點(diǎn).
(1)求、、三點(diǎn)的坐標(biāo);
(2)連接,,,若點(diǎn)為拋物線上一動點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,當(dāng)時,求的值(點(diǎn)不與點(diǎn)重合);
(3)連接,將沿軸正方向平移,設(shè)移動距離為,當(dāng)點(diǎn)和點(diǎn)重合時,停止運(yùn)動,設(shè)運(yùn)動過程中與重疊部分的面積為,請直接寫出與之間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料
材料1:若一個自然數(shù),從左到右各位數(shù)上的數(shù)字與從右到左各位數(shù)上的數(shù)字對應(yīng)相同,則稱為“對稱數(shù)”.
材料2:對于一個三位自然數(shù),將它各個數(shù)位上的數(shù)字分別2倍后取個位數(shù)字,得到三個新的數(shù)字,,,我們對自然數(shù)規(guī)定一個運(yùn)算:.
例如:是一個三位的“對稱數(shù)”,其各個數(shù)位上的數(shù)字分別2倍后取個位數(shù)字分別是:2、8、2.
則.
請解答:
(1)一個三位的“對稱數(shù)”,若,請直接寫出的所有值, ;
(2)已知兩個三位“對稱數(shù)”,若能被11整數(shù),求的所有值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com