【題目】墊球是排球隊常規(guī)訓練的重要項目之一.下列圖表中的數(shù)據是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.
(1)寫出運動員甲測試成績的眾數(shù)為_________;運動員乙測試成績的中位數(shù)為_________;運動員丙測試成績的平均數(shù)為_________;
(2)經計算三人成績的方差分別為S甲2=0.8、S乙2=0.4、S丙2=0.8,請綜合分析,在他們三人中選擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?為什么?
(3)甲、乙、丙三人相互之間進行墊球練習,每個人的球都等可能的傳給其他兩人,球最先從甲手中傳出,第三輪結束時球回到甲手中的概率是多少?(用樹狀圖或列表法解答)
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口的直徑 EF 長為10cm,母線OE(OF)長為10cm,在母線OF 上的點A 處有一塊爆米花殘渣且FA=2cm,一只螞蟻從杯口的點E 處沿圓錐表面爬行到A 點,則此螞蟻爬行的最短距離為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點A(1,4),點B(m,-1),
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出不等式x+b>的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料,解答問題:如果一個四位自然數(shù),十位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的差,個位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的和,則我們稱這個四位數(shù)“依賴數(shù)”,例如,自然數(shù)2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依賴數(shù)”.
(1)請直接寫出最小的四位依賴數(shù);
(2)若四位依賴數(shù)的后三位表示的數(shù)減去百位數(shù)字的3倍得到的結果除以7余3,這樣的數(shù)叫做“特色數(shù)”,求所有特色數(shù).
(3)已知一個大于1的正整數(shù)m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均為正整數(shù)),在m的所有表示結果中,當nq﹣np取得最小時,稱“m=pq+n4”是m的“最小分解”,此時規(guī)定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因為1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色數(shù)”的F(m)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于點A(1,0)和B(4,0).
(1)求拋物線的解析式;
(2)若拋物線的對稱軸交x軸于點E,點F是位于x軸上方對稱軸上一點,F(xiàn)C∥x軸,與對稱軸右側的拋物線交于點C,且四邊形OECF是平行四邊形,求點C的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點P,使△OCP是直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育用品商店試銷一款成本為 50 元的排球,規(guī)定試銷期間單價不低于成本價,且獲利不得高于 40%。經試銷發(fā)現(xiàn),銷售量 (個)與銷售單價 (元)之間滿足如圖所示的一次函數(shù)關系.
(1)試確定與 之間的函數(shù)關系式;
(2)若該體育用品商店試銷的這款排球所獲得的利潤為 元,試寫出利潤 (元)與銷售單價 (元)之間的函數(shù)關系式;當試銷單價定為多少元時,該商店可獲最大利潤?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為﹣7,點B表示的數(shù)為5,點C到點A,點B的距離相等,動點P從點A出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設運動的時間為t(t>0)秒.
(1)點C表示的數(shù)是 ;
(2)求當t等于多少秒時,點P到達點B處;
(3)點P表示的數(shù)是 (用含有t的代數(shù)式表示);
(4)求當t等于多少秒時,PC之間的距離為2個單位長度.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com