【題目】如圖,已知直線y=﹣2x+4分別交x軸、y軸于點A、B.拋物線過A、B兩點,點P是線段AB上一動點,過點P作PC⊥x軸于點C,交拋物線于點D.
(1)如圖1,設拋物線頂點為M,且M的坐標是(,),對稱軸交AB于點N.
①求拋物線的解析式;
②是否存在點P,使四邊形MNPD為菱形?并說明理由;
(2)是否存在這樣的點D,使得四邊形BOAD的面積最大?若存在,求出此時點D的坐標;若不存在,請說明理由.
【答案】(1)①y=﹣2x2+2x+4;;②不存在點P,使四邊形MNPD為菱形;;(2)存在,點D的坐標是(1,4).
【解析】
(1)①由一次函數(shù)圖象上點的坐標特征求得點B的坐標,設拋物線解析式為y=a,把點B的坐標代入求得a的值即可;
②不存在點P,使四邊形MNPD為菱形.設點P的坐標是(m,﹣2m+4),則D(m,﹣2m2+2m+4),根據(jù)題意知PD∥MN,所以當PD=MN時,四邊形MNPD為平行四邊形,根據(jù)該等量關(guān)系列出方程﹣2m2+4m=,通過解方程求得m的值,易得點N、P的坐標,然后推知PN=MN是否成立即可;
(2)設點D的坐標是(n,﹣2n2+2n+4),P(n,﹣2n+4).根據(jù)S四邊形BOAD=S△BOA+S△ABD=4+S△ABD,則當S△ABD取最大值時,S四邊形BOAD最大.根據(jù)三角形的面積公式得到函數(shù)S△ABD=﹣2(n﹣1)2+2.由二次函數(shù)的性質(zhì)求得最值.
解:①如圖1,
∵頂點M的坐標是,
∴設拋物線解析式為y=(a≠0).
∵直線y=﹣2x+4交y軸于點B,
∴點B的坐標是(0,4).
又∵點B在該拋物線上,
∴=4,
解得a=﹣2.
故該拋物線的解析式為:y==﹣2x2+2x+4;
②不存在.理由如下:
∵拋物線y=的對稱軸是直線x=,且該直線與直線AB交于點N,
∴點N的坐標是.
∴.
設點P的坐標是(m,﹣2m+4),則D(m,﹣2m2+2m+4),
∴PD=(﹣2m2+2m+4)﹣(﹣2m+4)=﹣2m2+4m.
∵PD∥MN.
當PD=MN時,四邊形MNPD是平行四邊形,即﹣2m2+4m=.
解得 m1=(舍去),m2=.
此時P(,1).
∵PN=,
∴PN≠MN,
∴平行四邊形MNPD不是菱形.
∴不存在點P,使四邊形MNPD為菱形;
(2)存在,理由如下:
設點D的坐標是(n,﹣2n2+2n+4),
∵點P在線段AB上且直線PD⊥x軸,
∴P(n,﹣2n+4).
由圖可知S四邊形BOAD=S△BOA+S△ABD.其中S△BOA=OBOA=×4×2=4.
則當S△ABD取最大值時,S四邊形BOAD最大.
S△ABD=(yD﹣yP)(xA﹣xB)
=yD﹣yP
=﹣2n2+2n+4﹣(﹣2n+4)
=﹣2n2+4n
=﹣2(n﹣1)2+2.
當n=1時,S△ABD取得最大值2,S四邊形BOAD有最大值.
此時點D的坐標是(1,4).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線交軸正半軸于點將拋物線平移得到拋物線與交于點,直線交于點,點的橫坐標為,且.
直接寫出點,點的坐標.求拋物線的表達式.
點是拋物線上間--點,作軸交拋物線于點,連結(jié),設點的橫坐標為當為何值時,使的面積最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形 ABCD 中,AB=8,BC=4.點 E 在邊 AB 上,點 F 在邊 CD 上,點 G、H 在對角線 AC 上.若四邊形 EGFH 是菱形,則 AE 的長是( )
A.2B.3C.5D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點I是△ABC的內(nèi)心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點A和C分別在x軸、y軸的正半軸上,且AB∥y軸,AB=4,△ABC的面積為2,將△ABC以點B為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°得到△DBE,一反比例函數(shù)圖象恰好過點D時,則此反比例函數(shù)解析式是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以BC為底邊的等腰△ABC,點D,E,G分別在BC,AB,AC上,且EG∥BC,DE∥AC,延長GE至點F,使得BE=BF.
(1)求證:四邊形BDEF為平行四邊形;
(2)當∠C=30°,時,求D,F兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長均為1的方格紙中有線段AB和CD,點A、B、C、D均在小正方形的頂點上.
(1)畫出一個以AB為一邊的△ABE,點E在小正方形的頂點上,且∠BAE=45°,△ABE的面積為;
(2)畫出以CD為一腰的等腰△CDF,點F在小正方形的頂點上,且△CDF的面積為;
(3)在(1)、(2)的條件下,連接EF,請直接寫出線段EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過點作軸的垂線,交直線于點;點與點關(guān)于直線對稱;過點作軸的垂線,交直線于點;點與點關(guān)于直線對稱;過點作軸的垂線,交直線于點;,按此規(guī)律作下去,則點的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在高爾夫球訓練中,運動員在距球洞處擊球,其飛行路線滿足拋物線,其圖象如圖所示,其中球飛行高度為,球飛行的水平距離為,球落地時距球洞的水平距離為.
(1)求的值;
(2)若運動員再一次從此處擊球,要想讓球飛行的最大高度不變且球剛好進洞,則球的飛行路線應滿足怎樣的拋物線,求拋物線的解析式;
(3)若球洞處有一橫放的高的球網(wǎng),球的飛行路線仍滿足拋物線,要使球越過球網(wǎng),又不越過球洞(剛好進洞),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com