【題目】為了了解全校1800名學(xué)生對(duì)學(xué)校設(shè)置的體操、球類、跑步、踢毽子等課外體育活動(dòng)項(xiàng)目的喜愛(ài)情況,在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生.對(duì)他們最喜愛(ài)的體育項(xiàng)目(每人只選一項(xiàng))進(jìn)行了問(wèn)卷調(diào)查,將數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)并繪制成了如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整).

1)補(bǔ)全頻數(shù)分布直方圖;

2)求扇形統(tǒng)計(jì)圖中表示踢毽子項(xiàng)目扇形圓心角的度數(shù).

3)估計(jì)該校1800名學(xué)生中有多少人最喜愛(ài)球類活動(dòng)?

【答案】(1) 80名;(2) 20人,補(bǔ)全圖形見(jiàn)解析;(3)估計(jì)全校有810人最喜歡球類活動(dòng).

【解析】

1)根據(jù)參加體操的人數(shù)為10人,占扇形圖的12.5%,即可得出參加活動(dòng)的總?cè)藬?shù),即可求出踢毽子的人數(shù);

2)根據(jù)踢毽子的人數(shù)所占的比例即可得出扇形圓心角的度數(shù);

3)根據(jù)樣本估計(jì)總體,即可得出估計(jì)全校最喜歡球類活動(dòng)的人數(shù).

110÷12.5%×25%20(人),如圖所示.

2)扇形統(tǒng)計(jì)圖中表示踢毽子項(xiàng)目扇形圓心角的度數(shù)為 =90°

3(人).

估計(jì)全校有810人最喜歡球類活動(dòng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙上的每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)間連線為邊的三角形稱為“格點(diǎn)三角形”,圖中的△ABC就是格點(diǎn)三角形.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(﹣2,﹣1).

(1)把△ABC向左平移4格后得到△A1B1C1,畫出△A1B 1C1并寫出點(diǎn)A1的坐標(biāo);

(2)把△ABC繞點(diǎn)C按順時(shí)針旋轉(zhuǎn)90°后得到△A2B2C,畫出△A2B2C的圖形并寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)是線段外,且,求證:點(diǎn)在線段的垂直平分線上,在證明該結(jié)論時(shí),需添加輔助線,則作法不正確的是( )

A. 的平分線于點(diǎn)B. 過(guò)點(diǎn)于點(diǎn)

C. 中點(diǎn),連接D. 過(guò)點(diǎn),垂足為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,AB、AC是圓O的兩條弦,AB=AC,過(guò)圓心O作OHAC于點(diǎn)H.

(1)如圖1,求證:B=C;

(2)如圖2,當(dāng)H、O、B三點(diǎn)在一條直線上時(shí),求BAC的度數(shù);

(3)如圖3,在(2)的條件下,點(diǎn)E為劣弧BC上一點(diǎn),CE=6,CH=7,連接BC、OE交于點(diǎn)D,求BE的長(zhǎng)和的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)市政府提出的建設(shè)美麗南寧的號(hào)召,我市某校在八,九年級(jí)開展征文活動(dòng),校學(xué)生會(huì)對(duì)這兩個(gè)年級(jí)各班內(nèi)的投稿情況進(jìn)行統(tǒng)計(jì),并制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.

1)求扇形統(tǒng)計(jì)圖中投稿篇數(shù)為2所對(duì)應(yīng)的扇形的圓心角的度數(shù):

2)求該校八,九年級(jí)各班在這一周內(nèi)投稿的平均篇數(shù),并將該條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)在投稿篇數(shù)為9篇的四個(gè)班級(jí)中,八,九年級(jí)各有兩個(gè)班,校學(xué)生會(huì)準(zhǔn)備從這四個(gè)班中選出兩個(gè)班參加全市的表彰會(huì),請(qǐng)你用列表法或畫樹狀圖的方法求出所選兩個(gè)班正好不在同一年級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,RtABC的三個(gè)頂點(diǎn)A(-2,2),B(0,5),C(0,2).

(1)ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到A1B1C,請(qǐng)畫出A1B1C的圖形.

(2)平移ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),請(qǐng)畫出平移后對(duì)應(yīng)的A2B2C2的圖形.

(3)若將A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A, B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式;

(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)D做x軸的垂線,交AC于點(diǎn)E,求線段DE的最大值.

(3)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,把矩形紙片OABC放入直角坐標(biāo)系xOy中,使OA、OC分別落在x、y軸的正半軸上,連接AC,且AC=4,

(1)求AC所在直線的解析式;

(2)將紙片OABC折疊,使點(diǎn)A與點(diǎn)C重合(折痕為EF),求折疊后紙片重疊部分的面積.

(3)求EF所在的直線的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案