【題目】在平面直角坐標(biāo)系xOy中的兩個(gè)圖形M與N,給出如下定義:P為圖形M上任意一點(diǎn),Q為圖形N上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最小值,那么稱(chēng)這個(gè)最小值為圖形M,N間的“和睦距離”,記作d(M,N).若圖形M,N有公共點(diǎn),則d(M,N)=0.
(1)如圖,A(0,1),C(3,4),⊙C的半徑為2,則d(C,⊙C)= ,d(O,⊙C)= ;
(2)已知,如圖,△ABC的一邊AC在x軸上,B在y軸上,且AC=8,AB=7,BC=5.
①D是△ABC內(nèi)一點(diǎn),若AC、BC分別切⊙D于E、F,且d(C,D)=2d(D,AB),判斷AB與⊙D的位置關(guān)系,并求出D點(diǎn)的坐標(biāo);
②若以r為半徑,①中的D為圓心的⊙D,有d(B,⊙D)>1,d(C,⊙D)<2,直接寫(xiě)出r的取值范圍 .
【答案】(1)2,3;(2)①AB是⊙O的切線(xiàn),②
【解析】
(1)由圖形M、M間的“和睦距離”的定義即可求解;
(2)①連接DF,DE,作DH⊥AB于H. 設(shè)OC=x.先證明∠CBO=30°,再證明DH=DE即可解決問(wèn)題
②先求出點(diǎn)D的坐標(biāo),列出不等式組求解即可.
解:(1)∵A(0,1),C(3,4),⊙C的半徑為2,
∴d(C,⊙C)=2,d(O,⊙C)=OC﹣2=﹣2=3,
故答案為2,3.
(2)①連接DF,DE,作DH⊥AB于H.設(shè)OC=x.
∵OB2=BC2﹣OC2=AB2﹣AO2,
∴52﹣x2=72﹣(8﹣x)2,
解得x=,
∴BC=2OC,
∴∠CBO=30°,∠BCO=60°,
∵CE,CF是⊙O的切線(xiàn),
∴CD平分∠BCA,
∴∠DCE=∠DCB=30°,
∴DC=2DE,
∵d(C,D)=2d(D,AB),
∴CD=2DH,
∴DH=DE,
∴AB是⊙O的切線(xiàn).
②由①可知OB=OC=,設(shè)DF=DE=DH=x,
∵S△ABC=ACOC=(AC+BC+AB)x,
∴x=,
∴CE=DE=3,CD=2DE=2,
∴OE=3﹣=,
∴D(,),∵B(0,),
∴BD==,
由題意:,
解得2﹣2<r<﹣1.
故答案為2﹣2<r<﹣1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個(gè)交點(diǎn)。
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)連接,求的面積;
(3)根據(jù)圖象直接寫(xiě)出使不等式成立的的取值范圍______________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2),
(1)畫(huà)△ABC關(guān)于y軸對(duì)稱(chēng)的圖形△A1B1C1;
(2)以O為位似中心,在第二象限內(nèi)把△ABC擴(kuò)大到原來(lái)的兩倍,得則△A2B2C2,畫(huà)出△A2B2C2;
(3)△ABC的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)c:y=x2+2x﹣3,將拋物線(xiàn)c平移得到拋物線(xiàn)c′,如果兩條拋物線(xiàn),關(guān)于直線(xiàn)x=1對(duì)稱(chēng),那么下列說(shuō)法正確的是( )
A. 將拋物線(xiàn)c沿x軸向右平移個(gè)單位得到拋物線(xiàn)c′ B. 將拋物線(xiàn)c沿x軸向右平移4個(gè)單位得到拋物線(xiàn)c′
C. 將拋物線(xiàn)c沿x軸向右平移個(gè)單位得到拋物線(xiàn)c′ D. 將拋物線(xiàn)c沿x軸向右平移6個(gè)單位得到拋物線(xiàn)c′
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O直徑,∠ACB的平分線(xiàn)交⊙O于D,若AC=m,BC=n,則CD的長(zhǎng)為_____(用含m、n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點(diǎn)D在A(yíng)C上,將△ABD繞點(diǎn)B沿順時(shí)針?lè)较蛐D(zhuǎn)90°后,得到△CBE.
(1)求∠DCE的度數(shù);
(2)若AB=4,CD=3AD,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦EF⊥AB于點(diǎn)C,點(diǎn)D是AB延長(zhǎng)線(xiàn)上一點(diǎn),∠A=30°,∠D=30°.
(1)求證:FD是⊙O的切線(xiàn);
(2)取BE的中點(diǎn)M,連接MF,若⊙O的半徑為2,求MF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:拋物線(xiàn)y=a(x+1)(x﹣3)與x軸相交于A、B兩點(diǎn),與y軸的交于點(diǎn)C(0,﹣3).
(1)求拋物線(xiàn)的解析式的一般式.
(2)若拋物線(xiàn)上有一點(diǎn)P,滿(mǎn)足∠ACO=∠PCB,求P點(diǎn)坐標(biāo).
(3)直線(xiàn)l:y=kx﹣k+2與拋物線(xiàn)交于E、F兩點(diǎn),當(dāng)點(diǎn)B到直線(xiàn)l的距離最大時(shí),求△BEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=x2+(2m+1)x+m(m﹣3),(m為常數(shù),﹣1≤m≤4),A(﹣m﹣1,y1),是該拋物線(xiàn)上不同的兩點(diǎn),現(xiàn)將拋物線(xiàn)的對(duì)稱(chēng)軸繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到直線(xiàn)a,過(guò)拋物線(xiàn)頂點(diǎn)P作PH⊥a于H.
(1)當(dāng)m=1時(shí),求出這條拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(2)若無(wú)論m取何值,拋物線(xiàn)與直線(xiàn)y=x﹣km(k為常數(shù))有且僅有一個(gè)公共點(diǎn),求k的值;
(3)當(dāng)1<PH≤6時(shí),試比較y1,y2之間的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com