【題目】如圖,AB是⊙O的直徑,弦EF⊥AB于點C,點D是AB延長線上一點,∠A=30°,∠D=30°.
(1)求證:FD是⊙O的切線;
(2)取BE的中點M,連接MF,若⊙O的半徑為2,求MF的長.
【答案】(1)見解析;(2)MF=.
【解析】
(1)如圖,連接OE,OF,由垂徑定理可知,根據(jù)圓周角定理可求出∠DOF=60°,根據(jù)三角形內(nèi)角和定理可得∠OFD=90°,即可得FD為⊙O的切線;(2)如圖,連接OM,由中位線的性質(zhì)可得OM//AE,根據(jù)平行線的性質(zhì)可得∠MOB=∠A=30°,根據(jù)垂徑定理可得OM⊥BE,根據(jù)含30°角的直角三角形的性質(zhì)可求出BE的長,利用勾股定理可求出OM的長,根據(jù)三角形內(nèi)角和可得∠DOF=60°,即可求出∠MOF=90°,利用勾股定理求出MF的長即可.
(1)如圖,連接OE,OF,
∵EF⊥AB,AB是⊙O的直徑,
∴,
∴∠DOF=∠DOE,
∵∠DOE=2∠A,∠A=30°,
∴∠DOF=60°,
∵∠D=30°,
∴∠OFD=90°,
∴OF⊥FD.
∴FD為⊙O的切線.
(2)如圖,連接OM,MF,
∵O是AB中點,M是BE中點,
∴OM∥AE.
∴∠MOB=∠A=30°.
∵OM過圓心,M是BE中點,
∴OM⊥BE.
∴MB=OB=1,
∴OM==,
∵∠OFD=90°,∠D=30°,
∴∠DOF=60°,
∴∠MOF=∠DOF+∠MOB=90°,
∴MF===.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對某一個函數(shù)給出如下定義:若存在實數(shù),對于任意的函數(shù)值,都滿足,則稱這個函數(shù)是有界函數(shù),在所有滿足條件的中,其最小值稱為這個函數(shù)的邊界值.例如,下圖中的函數(shù)是有界函數(shù),其邊界值是1.
(1)分別判斷函數(shù)和是不是有界函數(shù)?若是有界函數(shù),求其邊界值;
(2)若函數(shù)的邊界值是2,且這個函數(shù)的最大值也是2,求的取值范圍;
(3)將函數(shù)的圖象向下平移個單位,得到的函數(shù)的邊界值是,當(dāng)在什么范圍時,滿足?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年9月,我國中小學(xué)生迎來了新版“教育部統(tǒng)編義務(wù)教育語文教科書”,本次“統(tǒng)編本”教材最引人關(guān)注的變化之一是強調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展“最受歡迎的傳統(tǒng)文化經(jīng)典著作”調(diào)查,隨機調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:
(1)本次一共調(diào)查了 名學(xué)生;
(2)請將條形統(tǒng)計圖補充完整;
(3)某班語文老師想從這四大名著中隨機選取兩部作為學(xué)生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中的兩個圖形M與N,給出如下定義:P為圖形M上任意一點,Q為圖形N上任意一點,如果P,Q兩點間的距離有最小值,那么稱這個最小值為圖形M,N間的“和睦距離”,記作d(M,N).若圖形M,N有公共點,則d(M,N)=0.
(1)如圖,A(0,1),C(3,4),⊙C的半徑為2,則d(C,⊙C)= ,d(O,⊙C)= ;
(2)已知,如圖,△ABC的一邊AC在x軸上,B在y軸上,且AC=8,AB=7,BC=5.
①D是△ABC內(nèi)一點,若AC、BC分別切⊙D于E、F,且d(C,D)=2d(D,AB),判斷AB與⊙D的位置關(guān)系,并求出D點的坐標(biāo);
②若以r為半徑,①中的D為圓心的⊙D,有d(B,⊙D)>1,d(C,⊙D)<2,直接寫出r的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個頂點分別為A(-3,4),B(-5,1),C(-1,2).
(1)畫出△ABC關(guān)于原點對稱的△A1B1C1,并寫出點B1的坐標(biāo);
(2)畫出△ABC繞原點逆時針旋轉(zhuǎn)90°后的△A2B2C2,并寫出點B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了計算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD(四邊相等、四內(nèi)角相等)中,AD=5,點E、F是正方形ABCD內(nèi)的兩點,且AE=FC=4,BE=DF=3,則EF的平方為( 。
A.2B.C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段 AC=4,線段BC繞點C旋轉(zhuǎn),且BC=6,連結(jié)AB,以AB為邊作正方形ADEB,連結(jié)CD.
(1)若∠ACB=90°,則AB的值是____;
(2)線段CD長的最大值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,若直線l︰y=-2x+4交x軸于點A、交y軸于點B,將△AOB繞點O逆時針旋轉(zhuǎn)得到△COD.過點A,B,D的拋物線h︰y=ax2+bx+4.
(1)求拋物線h的表達式;
(2)若與y軸平行的直線m以1秒鐘一個單位長的速度從y軸向左平移,交線段CD于點M、交拋物線h于點N,求線段MN的最大值;
(3)如圖②,點E為拋物線h的頂點,點P是拋物線h在第二象限的上一動點(不與點D、B重合),連接PE,以PE為邊作圖示一側(cè)的正方形PEFG.隨著點P的運動,正方形的大小、位置也隨之改變,當(dāng)頂點F或G恰好落在y軸上時,直接寫出對應(yīng)的點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com