【題目】如圖,BE、CD 相交于點 A,連接 BC,DE,下列條件中不能判斷△ABC∽ADE 的是( )
A. ∠B=∠D B. ∠C=∠E C. D.
【答案】C
【解析】
根據(jù)兩個三角形相似的判定定理來判斷:兩邊對應成比例且夾角相等,兩個三角形相似.;三邊對應成比例,兩個三角形相似;兩角對應相等,兩個三角形相似。即可分析得出答案。
解:∵∠BAC=∠DAE,
∴當∠B=∠D 或∠C=∠E 時,可利用兩角對應相等的兩個三角形相似證得△ABC∽ADE, 故 A、B 選項可判斷兩三角形相似;
當 時,可得 ,結(jié)合∠BAC=∠DAE,則可證得△ABC∽△AED,而不能得
出△ABC∽△ADE,故 C 不能判斷△ABC∽ADE;
當 時,結(jié)合∠BAC=∠DAE,可證得△ABC∽△ADE,故 D 能判斷△ABC∽△ADE;
故本題答案為:C
科目:初中數(shù)學 來源: 題型:
【題目】如圖,網(wǎng)格線的交點叫格點,格點是的邊上的一點(請利用網(wǎng)格作圖,保留作圖痕跡).
(1)過點畫的垂線,交于點;
(2)線段 的長度是點O到PC的距離;
(3)的理由是 ;
(4)過點C畫的平行線;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P和正方形給出如下定義:若正方形的對角線交于點O,四條邊分別和坐標軸平行,我們稱該正方形為原點正方形,當原點正方形上存在點Q,滿足PQ≤1時,稱點P為原點正方形的友好點.
(1)當原點正方形邊長為4時,
①在點P1(0,0),P2(-1,1),P3(3,2)中,原點正方形的友好點是__________;
②點P在直線y=x的圖象上,若點P為原點正方形的友好點,求點P橫坐標的取值范圍;
(2)乙次函數(shù)y=-x+2的圖象分別與x軸,y軸交于點A,B,若線段AB上存在原點正方形的友好點,直接寫出原點正方形邊長a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有甲、乙兩個長方形紙片,邊長如圖所示,面積分別為和.
(1)①計算:______,______;
②用“<”“=”或“>”填空:______
(2)若一個正方形紙片的周長與乙長方形的周長相等,面積為.
①該正方形的邊長是______(用含的代數(shù)式表示);
②小方同學發(fā)現(xiàn):與的差與無關(guān).請判斷小方的發(fā)現(xiàn)是否正確,并通過計算說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】本學期第三周周末,七年級27班在人美心善的范老師的帶領(lǐng)下開展了大型“綠水青山都是金山銀山”的植樹活動.全班一起種植許愿樹和發(fā)財樹.已知購買1棵許愿樹和2棵發(fā)財樹需要42元,購買2棵許愿樹和1棵發(fā)財樹需要48元.
(1)你來算一算許愿樹、發(fā)財樹每棵各多少錢?
(2)范老師傳達最高指示:全班種植許原樹和發(fā)財樹共20棵,且許愿樹的數(shù)量不少于發(fā)財樹的數(shù)量,但由于班費資金緊張,范老師還要求兩種樹的總成本不得高于312元.聰明的同學們,你們知道共有哪幾種種植方案嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC,BD交于點O,AC=4,BD=16,將△ABO沿點A到點C的方向平移,得到△A′B′O′,當點A′與點C重合時,點A與點B′之間的距離為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】求知中學有一塊四邊形的空地ABCD,如下圖所示,學校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要250元,問學校需要投入多少資金買草皮?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com