【題目】如圖,已知AEBF,∠A=60°,點(diǎn)P為射線AE上任意一點(diǎn)(不與點(diǎn)A重合),BCBD分別平分∠ABP和∠PBF,交射線AE于點(diǎn)C,點(diǎn)D

1)圖中∠CBD= °;

2)當(dāng)∠ACB=ABD時(shí),∠ABC= °;

3)隨點(diǎn)P位置的變化,圖中∠APB與∠ADB之間的數(shù)量關(guān)系始終為 ,請(qǐng)說(shuō)明理由.

【答案】160 ;(230 ;(3,見(jiàn)解析.

【解析】

1)根據(jù)角平分線的定義只要證明∠CBDABF即可;

2)想辦法證明∠ABC=CBP=DBP=DBF即可解決問(wèn)題;

3)∠APB=2ADB.可以證明∠APB=PBF,∠ADB=DBFPBF

1)∵AEBF,∴∠ABF=180°﹣∠A=120°.

又∵BCBD分別平分∠ABP和∠PBF,∴∠CBD=CBP+DBP(∠ABP+PBFABF=60°.

故答案為:60

2)∵AEBF,∴∠ACB=CBF

又∵∠ACB=ABD,∴∠CBF=ABD,∴∠ABC=ABD﹣∠CBD=CBF﹣∠CBD=DBF,∴∠ABC=CBP=DBP=DBF,∴∠ABCABF=30°.

故答案為:30

3)∠APB=2ADB.理由如下:

AEBF,∴∠APB=PBF,∠ADB=DBF

又∵BD平分∠PBF,∴∠ADB=DBFPBFAPB,即∠APB=2ADB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,于點(diǎn),,.點(diǎn)從點(diǎn)出發(fā),在線段上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng);與此同時(shí),垂直于的直線從底邊出發(fā),以每秒的速度沿方向勻速平移,分別交、、于點(diǎn)、、,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn)與直線同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒(.

1)當(dāng)時(shí),連接、,求證:四邊形為菱形;

2)當(dāng)時(shí),求的面積;

3)是否存在某一時(shí)刻,使為以點(diǎn)為直角頂點(diǎn)的直角三角形?若存在,請(qǐng)求出此時(shí)刻的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,矩形ABCD的面積為10cm2,它的兩條對(duì)角線交于點(diǎn)O1,以ABAO1為鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對(duì)角線交于點(diǎn)O2,同樣以AB、AO2為鄰邊作平行四邊形ABC2O2,,依此類推,則平行四邊形ABC5O5的面積為(  )

A. 1cm2B. 2cm2C. cm2D. cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=∠2,∠3=∠4,∠5=∠6,試判斷ED與FB的位置關(guān)系,并說(shuō)明為什么.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)愛(ài)因斯坦的相對(duì)論可知,任何物體的運(yùn)動(dòng)速度不能超過(guò)光速(3×105km/s),因?yàn)橐粋(gè)物體達(dá)到光速需要無(wú)窮多的能量,并且時(shí)光會(huì)倒流,這在現(xiàn)實(shí)中是不可能的.但我們可讓一個(gè)虛擬物超光速運(yùn)動(dòng),例如:直線l,m表示兩條木棒相交成的銳角的度數(shù)為10°,它們分別以與自身垂直的方向向兩側(cè)平移時(shí),它們的交點(diǎn)A也隨著移動(dòng)(如圖箭頭所示),如果兩條直線的移動(dòng)速度都是光速的0.2倍,則交點(diǎn)A的移動(dòng)速度是光速的_____倍.(結(jié)果保留兩個(gè)有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知整數(shù)a1、a2a3、a4、……滿足下列條件:a1=-1,a2=-|a1+1|,a3=-|a2+2|a4=-|a3+3|,……,an+1=-|an+n|n為正整數(shù))依此類推,則a2019的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy,邊長(zhǎng)為5的正方形ABCD的對(duì)角線ACBD相交于點(diǎn)P,頂點(diǎn)Ax軸正半軸上運(yùn)動(dòng),頂點(diǎn)By軸正半軸上運(yùn)動(dòng)(x軸的正半軸、y軸的正半軸都不包含原點(diǎn)O),頂點(diǎn)C. D都在第一象限。

(1)當(dāng)點(diǎn)A坐標(biāo)為(4,0)時(shí),求點(diǎn)D的坐標(biāo);

(2)求證:OP平分∠AOB;

(3)直接寫(xiě)出OP長(zhǎng)的取值范圍(不要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx經(jīng)過(guò)點(diǎn)A(﹣1,)及原點(diǎn),交x軸于另一點(diǎn)C(2,0),點(diǎn)D(0,m)是y軸正半軸上一動(dòng)點(diǎn),直線AD交拋物線于另一點(diǎn)B.

(1)求拋物線的解析式;

(2)如圖1,連接AO、BO,若OAB的面積為5,求m的值;

(3)如圖2,作BEx軸于E,連接AC、DE,當(dāng)D點(diǎn)運(yùn)動(dòng)變化時(shí),AC、DE的位置關(guān)系是否變化?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,現(xiàn)有兩條鄉(xiāng)村公路AB、BCAB長(zhǎng)為1200米,BC長(zhǎng)為1600,一個(gè)人騎摩托車(chē)從A處以20m/s的速度勻速沿公路AB、BCC處行駛;另一人騎自行車(chē)從B處以5m/s的速度從BC行駛,并且兩人同時(shí)出發(fā).

1)求經(jīng)過(guò)多少秒摩托車(chē)追上自行車(chē)?

2)求兩人均在行駛途中時(shí),經(jīng)過(guò)多少秒兩人在行進(jìn)路線上相距150米?

查看答案和解析>>

同步練習(xí)冊(cè)答案