【題目】如圖所示,矩形ABCD的面積為10cm2,它的兩條對角線交于點O1,以AB、AO1為鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對角線交于點O2,同樣以AB、AO2為鄰邊作平行四邊形ABC2O2,,依此類推,則平行四邊形ABC5O5的面積為(  )

A. 1cm2B. 2cm2C. cm2D. cm2

【答案】D

【解析】

根據(jù)矩形的性質(zhì)對角線互相平分可知O1ACDB的中點,根據(jù)等底同高得到SABO1=S矩形,又ABC1O1為平行四邊形,根據(jù)平行四邊形的性質(zhì)對角線互相平分,得到O1O2=BO2,所以SABO2=S矩形,以此類推得到SABO5=S矩形,而SABO5等于平行四邊形ABC5O5的面積的一半,根據(jù)矩形的面積即可求出平行四邊形ABC5O5的面積.

解:∵設(shè)平行四邊形ABC1O1的面積為S1,∴SABO1= S1

SABO1=S矩形,∴S1=S矩形=5=;

設(shè)ABC2O2為平行四邊形為S2,∴SABO2=S2

SABO2=S矩形,∴S2=S矩形==;

,,

同理:設(shè)ABC5O5為平行四邊形為S5S5==

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2bxca0圖象如圖所示,下列結(jié)論:①abc0;②2ab0;③當(dāng)m1時,abam2bm;④abc0;⑤若,且,則,其中正確的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊,否則互為反方隊員.

(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;

(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從、兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達(dá)地后馬上以另一速度原路返回地(掉頭的時間忽略不計),乙車到達(dá)地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離(千米)與甲車的行駛時間(小時)之間的函數(shù)圖象,則當(dāng)乙車到達(dá)地的時候,甲車與地的距離為__________千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側(cè)一點,且AB=20,

(1)寫出數(shù)軸上點B表示的數(shù)   

(2)|5﹣3|表示53之差的絕對值,實際上也可理解為53兩數(shù)在數(shù)軸上所對的兩點之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點與表示有理數(shù)3的點之間的距離.試探索:

①:若|x﹣8|=2,則x=   

:|x+12|+|x﹣8|的最小值為   

(3)動點PO點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.求當(dāng)t為多少秒時?A,P兩點之間的距離為2;

(4)動點P,Q分別從O,B兩點,同時出發(fā),點P以每秒5個單位長度沿數(shù)軸向右勻速運動,Q點以P點速度的兩倍,沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.問當(dāng)t為多少秒時?P,Q之間的距離為4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.

(1)求此人所在位置點P的鉛直高度.(結(jié)果精確到0.1米)

(2)求此人從所在位置點P走到建筑物底部B點的路程(結(jié)果精確到0.1米)

測傾器的高度忽略不計,參考數(shù)據(jù):tan53°≈,tan63.5°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仙居吾悅廣場于日開業(yè),商場內(nèi)兩家服裝店舉行開業(yè)大酬賓活動,甲乙兩家服裝店優(yōu)惠活動如下表:

購買服裝總金額(元)

不超過

超過元但不超過元的部分

元以上的部分

優(yōu)惠幅度

乙服裝店優(yōu)惠活動:購買服裝總金額每滿元減.

例如:購買總金額滿元減元,滿元減元,以此類推.

1)若在兩家店購買服裝總金額都是元,哪家店實際付款更少?少多少?

2)若購買服裝總金額小于元,選擇哪家店購買服裝更劃算?請通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AEBF,∠A=60°,點P為射線AE上任意一點(不與點A重合),BC,BD分別平分∠ABP和∠PBF,交射線AE于點C,點D

1)圖中∠CBD= °;

2)當(dāng)∠ACB=ABD時,∠ABC= °;

3)隨點P位置的變化,圖中∠APB與∠ADB之間的數(shù)量關(guān)系始終為 ,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,直線PQ垂直平分AC,與邊AB交于點E,連接CE,過點CCFBAPQ于點F,連接AF.

(1)求證:四邊形AECF是菱形;

(2)若AD=3,AE=5,則求菱形AECF的面積.

查看答案和解析>>

同步練習(xí)冊答案