【題目】如圖,已知直線(xiàn)y=﹣x+2x軸,y軸交于B,A兩點(diǎn),拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A,B

1)求這個(gè)拋物線(xiàn)的解析式;

2)點(diǎn)P為線(xiàn)段OB上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作垂直于x軸的直線(xiàn)交拋物線(xiàn)于點(diǎn)N,交直線(xiàn)AB于點(diǎn)M

①點(diǎn)C是直線(xiàn)AB上方拋物線(xiàn)上一點(diǎn),當(dāng)MNC∽△BPM相似時(shí),求出點(diǎn)C的坐標(biāo).

②若∠NAB60°,求點(diǎn)P的坐標(biāo).

【答案】(1)y=﹣x2+x+2.(2)①點(diǎn)C的坐標(biāo)為(,)或(,)②點(diǎn)P的坐標(biāo)為(,0).

【解析】

1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A,B的坐標(biāo),由點(diǎn)AB的坐標(biāo),利用待定系數(shù)法即可求出拋物線(xiàn)的解析式;
2)①設(shè)點(diǎn)P的坐標(biāo)為(x,0),則點(diǎn)N的坐標(biāo)為(x-x2+ x+2),點(diǎn)C的坐標(biāo)為(-x-x2+x+2),點(diǎn)M的坐標(biāo)為(-x+2),進(jìn)而可得出MN=-x2+4xCN=|2x-|,由相似三角形的性質(zhì)即可得出關(guān)于x的方程,解之即可得出x的值,進(jìn)而可得出點(diǎn)C的坐標(biāo);
②過(guò)點(diǎn)NNEAB于點(diǎn)E,設(shè)點(diǎn)P的坐標(biāo)為(m,0),則PM=-m+2MN=-m2+4m,利用相似三角形的性質(zhì)及特殊角的三角函數(shù)值可用含m的代數(shù)式表示出BMME,AE的長(zhǎng)度,再利用勾股定理即可得出關(guān)于m的一元二次方程,解之取其正值即可得出結(jié)論.

解:(1)當(dāng)x0時(shí),y=﹣x+22,

∴點(diǎn)A的坐標(biāo)為(02);

當(dāng)y0時(shí),﹣x+20

解得:x4,

∴點(diǎn)B的坐標(biāo)為(4,0).

A0,2),B40)代入y=﹣x2+bx+c,得:,

解得:

∴這個(gè)拋物線(xiàn)的解析式為y=﹣x2+x+2

2)①當(dāng)MNC∽△BPM相似時(shí),如圖1所示.

設(shè)點(diǎn)P的坐標(biāo)為(x,0),則點(diǎn)N的坐標(biāo)為(x,﹣x2+x+2),點(diǎn)C的坐標(biāo)為(x,﹣x2+x+2),點(diǎn)M的坐標(biāo)為(﹣x+2),

MN=﹣x2+x+2﹣(﹣x+2)=﹣x2+4x,CN|x﹣(x||2x|

∵△MNC∽△BPM,

,即,

解得:x1x2=﹣(舍去),x31,x47(舍去),

x,

∴當(dāng)MNC∽△BPM時(shí),點(diǎn)C的坐標(biāo)為(,)或(,).

②過(guò)點(diǎn)NNEAB于點(diǎn)E,如圖2所示.

設(shè)點(diǎn)P的坐標(biāo)為(m,0),則PM=﹣m+2,MN=﹣m2+4m,

BMPM=﹣m+2,MEMN(﹣m2+4m),NE2ME(﹣m2+4m),AENE(﹣m2+4m),

BM+ME+AEAB,即﹣m+2+(﹣m2+4m+(﹣m2+4m)=,

整理得:(6+4m2﹣(16+9m0

解得:m10(舍去),m2,

∴當(dāng)∠NAB60°時(shí),點(diǎn)P的坐標(biāo)為(0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtACB中,∠C=90°,AC=3BC=4,OBC的中點(diǎn),到點(diǎn)O的距離等于BC的所有點(diǎn)組成的圖形記為G,圖形GAB交于點(diǎn)D

1)補(bǔ)全圖形并求線(xiàn)段AD的長(zhǎng);

2)點(diǎn)E是線(xiàn)段AC上的一點(diǎn),當(dāng)點(diǎn)E在什么位置時(shí),直線(xiàn)ED 圖形G有且只有一個(gè)交點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)y=﹣x2+m1x+m的對(duì)稱(chēng)軸為x,請(qǐng)你解答下列問(wèn)題:

1m   ,拋物線(xiàn)與x軸的交點(diǎn)為   

2x取什么值時(shí),y的值隨x的增大而減小?

3x取什么值時(shí),y0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過(guò)點(diǎn)B作⊙O的切線(xiàn),交DA的延長(zhǎng)線(xiàn)于點(diǎn)E,連接BD,且∠E=∠DBC

1)求證:DB平分∠ADC;

2)若CD9,tanABE,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形的兩個(gè)頂點(diǎn),在反比例函數(shù)的圖象上,對(duì)角線(xiàn)的交點(diǎn)恰好是坐標(biāo)原點(diǎn),已知點(diǎn),.

1)求反比例函數(shù)的解析式;

2)點(diǎn)軸上一點(diǎn),若是等腰三角形,直接寫(xiě)出點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于OB=600,CDO的直徑,點(diǎn)PCD延長(zhǎng)線(xiàn)上的一點(diǎn),且AP=AC

1)求證:PAO的切線(xiàn);

2)若PD=,求O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C為圓上一點(diǎn),且∠AOC120°,⊙O的半徑為2P為圓上一動(dòng)點(diǎn),QAP的中點(diǎn),則CQ的長(zhǎng)的最值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).

(1)求反比例函數(shù)的解析式;

(2)觀察圖象,直接寫(xiě)出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;

(3)若雙曲線(xiàn)上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長(zhǎng)度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C為圓上一點(diǎn),且∠AOC120°,⊙O的半徑為2,P為圓上一動(dòng)點(diǎn),QAP的中點(diǎn),則CQ的長(zhǎng)的最值是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案