【題目】已知⊙O1與⊙O2外切,O1O2=8cm,⊙O1的半徑為5cm,則⊙O2的半徑是( )
A.13cm
B.8cm
C.6cm
D.3cm
【答案】D
【解析】解:根據(jù)兩圓外切,圓心距等于兩圓半徑之和,得該圓的半徑是8﹣5=3(cm). 故選D.
【考點精析】解答此題的關(guān)鍵在于理解圓與圓的位置關(guān)系的相關(guān)知識,掌握兩圓之間有五種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個公共點的叫相交.兩圓圓心之間的距離叫做圓心距.兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知△ABC中,D為BC上一點,E為△ABC外部一點,DE交AC于一點O,AC=AE,AD=AB,∠BAC=∠DAE.
(1)求證:△ABC≌△ADE;
(2)若∠BAD=20°,求∠CDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖分別是某班今年中考體育選考項目統(tǒng)計圖。請你根據(jù)圖中提供的信息,解答下列問題:
(1)本班學生共有 人;
(2)計算該班參加鉛球考試的人數(shù),并補全統(tǒng)計圖5;
(3)在統(tǒng)計圖6中,求出參加跳繩考試所對應的圓心角的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個三角形的一個頂點是它的三條高的交點,那么這個三角形是( )
A. 銳角三角形 B. 直角三角形 C. 鈍角三角形 D. 等邊三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a、b、c是三角形的三邊長,化簡:|a-b+c|-|a-b-c|=( 。
A. 2a-2b B. 2a-2c C. a-2b D. 0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(a-1,a+b),B(a,0),且|a+b-3|+(a-2b)2=0,C為x軸上點B右側(cè)的動點,以AC為腰作等腰三角形ACD,使AD=AC,∠CAD=∠OAB,直線DB交y軸于點P.
(1)求證:AO=AB;
(2)求證:△AOC≌△ABD;
(3)當點C運動時,點P在y軸上的位置是否發(fā)生改變,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);
(3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D是邊BC的中點,點E在△ABC內(nèi),AE平分∠BAC,CE⊥AE,點F在邊AB上,EF∥BC.
(1)求證:四邊形BDEF是平行四邊形;
(2)線段BF、AB、AC的數(shù)量之間具有怎樣的關(guān)系?證明你所得到的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com