【題目】如圖,已知在正方形ABCD中,AE∥BD,BE=BD,BE交AD于F.求證:DE=DF.
【答案】證明:連接AC,交BD于點O,作EG⊥BD于點G.
∵四邊形ABCD是正方形,
∴AC⊥BD,
∵AE∥BD,
∴四邊形AOGE是矩形,
∴EG=AO= AC= BD= BE,
∴∠EBD=30°,
∵∠EBD=30°,BE=BD,
∴∠BED=75°,
∵∠EFD=∠FDB+∠EBD=45+30=75°,
∴∠DEF=∠DFE,
∴DF=DE.
【解析】連接AC,交BD于點O,作EG⊥BD垂足為G,先證明四邊形AOGE是矩形,從而可得到EG=BD=BE,從而可求得∠EBD=30°,接下來可求得∠BED=75°,然后再依據(jù)∠EFD=∠FDB+∠EBD求得∠EFD的度數(shù),故∠DEF=∠DFE,最后,依據(jù)等邊對等角的性質(zhì)進行證明即可.
【考點精析】本題主要考查了等腰三角形的性質(zhì)和含30度角的直角三角形的相關(guān)知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N.下面是推理過程,請你填空:
解:∵∠BAE+∠AED=180° (已知) ,
∴AB//DE( ),
∴∠BAE= ( )
又 ∵∠1=∠2(已知)
∴∠BAE-∠1= - (等式性質(zhì)),
即∠MAE=∠NEA,
∴ ∥ ( ),
∴∠M=∠N(兩直線平行,內(nèi)錯角相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在線段AB上,點M、N分別是AC、BC的中點.
(1)若AC=9cm,CB=6cm,求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=acm,其它條件不變,你能猜想MN的長度嗎?并說明理由.
(3)若C在線段AB的延長線上,且滿足AC-BC=bcm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,并直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形AOBC是矩形,以O(shè)為坐標原點,OB、OA分別在x軸、y軸上,點A的坐標為(0,3),∠OAB=60°,以AB為軸對折后,C點落在D點處,則D點的坐標為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,OC平分,C為角平分線上一點,過點C作,垂足為C,交OB于點D,交OB于點E.
判斷的形狀,并說明理由;
若,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=x,過點A(0,1)作y軸的垂線交直線l于點B,過點B作直線l的垂線交y軸于點A1;過點A1作y軸的垂線交直線l于點B1,過點B1作直線l的垂線交y軸于點A2;…按此作法繼續(xù)下去,點B2013的坐標為( )
A. (42012×,42012) B. (24026×,24026) C. (24026×,24024) D. (44024×,44024)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)圖象經(jīng)過(-4,-9)和(3,5)兩點.
①求一次函數(shù)解析式.
②求圖象和坐標軸交點坐標.并畫出圖象.
③求圖象和坐標軸圍成三角形面積.
④若點(2,a)在函數(shù)圖象上,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進A、B兩種花草,第一次分別購進A、B兩種花草30棵和15棵,共花費675元;第二次分別購進A、B兩種花草12棵和5棵.兩次共花費940元(兩次購進的A、B兩種花草價格均分別相同).
(1)A、B兩種花草每棵的價格分別是多少元?
(2)若購買A、B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請你給出一種費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com