【題目】如圖,在△ABC中,DM、EN分別垂直平分AC和BC,交AB于M、N兩點(diǎn),DM與EN相交于點(diǎn)F.
(1)若△CMN的周長(zhǎng)為15cm,求AB的長(zhǎng);
(2)若∠MFN=70°,求∠MCN的度數(shù).
【答案】(1)15;(2)40.
【解析】試題分析:(1)、根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AM=CM,BN=CN,然后求出△CMN的周長(zhǎng)=AB;(2)、根據(jù)三角形的內(nèi)角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根據(jù)等邊對(duì)等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的內(nèi)角和定理列式計(jì)算即可得解.
試題解析:(1)、∵DM、EN分別垂直平分AC和BC, ∴AM=CM,BN=CN,
∴△CMN的周長(zhǎng)=CM+MN+CN=AM+MN+BN=AB, ∵△CMN的周長(zhǎng)為15cm, ∴AB=15cm;
(2)、∵∠MFN=70°, ∴∠MNF+∠NMF=180°﹣70°=110°, ∵∠AMD=∠NMF,∠BNE=∠MNF,
∴∠AMD+∠BNE=∠MNF+∠NMF=110°, ∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,
∵AM=CM,BN=CN, ∴∠A=∠ACM,∠B=∠BCN, ∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017湖北省十堰市,第10題,3分)如圖,直線分別交x軸,y軸于A,B,M是反比例函數(shù)(x>0)的圖象上位于直線上方的一點(diǎn),MC∥x軸交AB于C,MD⊥MC交AB于D,ACBD=,則k的值為( )
A. ﹣3 B. ﹣4 C. ﹣5 D. ﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校設(shè)計(jì)了如圖所示的雕塑,取名“階梯”, 現(xiàn)在工廠師傅打算用油漆噴刷所有暴露面,經(jīng)測(cè)量,已知每個(gè)小立方體的棱長(zhǎng)為0.5米.
(1)請(qǐng)你畫出從它的正面、左面、上面三個(gè)不同方向看到的平面圖形.
(2)請(qǐng)你幫助工人師傅計(jì)算一下,需要噴刷油漆的總面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)江汛期即將來(lái)臨,防汛指揮部在一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖,燈A射線自AM順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線自BP順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是a度/秒,燈B轉(zhuǎn)動(dòng)的速度是b度/秒,且a,b滿足|a﹣3b﹣1|+(a+b﹣5)2=0.假定這一帶長(zhǎng)江兩岸河堤是平行的,即PQ∥MN,且∠BAN=45°.
(1)求a,b的值;
(2)若兩燈同時(shí)轉(zhuǎn)動(dòng),經(jīng)過(guò)42秒,兩燈射出的光束交于C,求此時(shí)∠ACB的度數(shù);
(3)若燈B射線先轉(zhuǎn)動(dòng)10秒,燈A射線才開始轉(zhuǎn)動(dòng),在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于任意有理數(shù)a,b,定義運(yùn)算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運(yùn)算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.
(1)求(﹣2)⊙3的值;
(2)對(duì)于任意有理數(shù)m,n,請(qǐng)你重新定義一種運(yùn)算“⊕”,使得5⊕3=20,寫出你定義的運(yùn)算:m⊕n= (用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:如圖,點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,則A、B兩點(diǎn)之間的距離可以表示為|a﹣b|.
根據(jù)閱讀材料與你的理解回答下列問(wèn)題:
(1)數(shù)軸上表示3與﹣2的兩點(diǎn)之間的距離是 .
(2)數(shù)軸上有理數(shù)x與有理數(shù)7所對(duì)應(yīng)兩點(diǎn)之間的距離用絕對(duì)值符號(hào)可以表示為 .
(3)代數(shù)式|x+8|可以表示數(shù)軸上有理數(shù)x與有理數(shù) 所對(duì)應(yīng)的兩點(diǎn)之間的距離;若|x+8|=5,則x= .
(4)求代數(shù)式|x+1008|+|x+504|+|x﹣1007|的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B分別為數(shù)軸上兩點(diǎn),點(diǎn)A表示的數(shù)是-30,點(diǎn)B表示的數(shù)是50
(1)請(qǐng)寫出線段AB中點(diǎn)M表示的數(shù)是__________
(2)若動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí)另一動(dòng)點(diǎn)Q恰好從A點(diǎn)出發(fā),以每秒兩個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸也向左運(yùn)動(dòng),設(shè)P,Q兩點(diǎn)在數(shù)軸上的C點(diǎn)相遇,求C點(diǎn)表示的數(shù)是多少?
(3)若點(diǎn)P運(yùn)動(dòng)到數(shù)軸上某一位置,使點(diǎn)P到點(diǎn)A的距離是點(diǎn)P到點(diǎn)B的距離的2倍,求出此時(shí)點(diǎn)P表示的數(shù)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com