【題目】如圖,中,,,,點(diǎn)邊上.

1)如圖1,連接,若,求的長度;

2)如圖2,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)過程中,直線分別與直線交于點(diǎn),當(dāng)是等腰三角形時(shí),直接寫出的值;

3)如圖3,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),使得點(diǎn)在同一條直線上,點(diǎn)的中點(diǎn),連接.猜想之間的數(shù)量關(guān)系并證明.

【答案】1;(222.5°112.5°、45°;(3AE+CF=.

【解析】

1)根據(jù)勾股定理求出AB的長,可得CE,再用勾股定理可得FC的長度;

2)分別當(dāng)CM=CN,MN=CNMN=MC時(shí),進(jìn)行討論即可;

3)連接AP,延長AECF于點(diǎn)Q,由四點(diǎn)共圓可知∠AEP=45°,從而推出A、EQ共線,再由垂直平分線的判定可知AQ垂直平分CF,即得△ABF為等腰三角形,得到APBF,則△AEP為等腰直角三角形,得到AEPE的關(guān)系,再根據(jù)EFFC的關(guān)系得到AE、CFBP三者的數(shù)量關(guān)系.

解:(1,,

AB==5,

EC=EF=3,

FC==;

2)由題意可知△CMN中不會(huì)形成MN=MC的等腰三角形,

①當(dāng)CM=CN時(shí),

CNE=180°-45°=67.5°

∵∠NEC=90°,

α=ACE=22.5°;

②當(dāng)CM=CN時(shí),α=ACE,

∵∠ACB=45°

∴∠CNM=CMN=×45°=22.5°,

∵∠CEM=90°,

∴∠ECM=67.5°

α=ACE=112.5°;

③當(dāng)CN=MN時(shí),此時(shí)CEBC共線,

α=BCA=45°;

綜上:當(dāng)是等腰三角形時(shí),α的值為:22.5°112.5°、45°.

3AE+CF=

連接AP,延長AECF于點(diǎn)Q

由題意可得:∠CEB=BAC=90°,

A、E、C、B四點(diǎn)共圓,

可得:∠AEB=ACB=45°,

且∠CEQ=45°,

∴∠EQC=90°

可知點(diǎn)ACF的垂直平分線上,

AC=AF=AB

∵點(diǎn)PBF中點(diǎn),

APBF,

∴△APE為等腰直角三角形,

AE=,

又∵△EFC為等腰直角三角形,

CF=,

+==AE+CF

BP=PF,

AE+CF=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ADBC邊上的高,AE、BF分別是∠BAC、ABC的平分線,∠BAC=50°,ABC=60°,則∠EAD+ACD=( 。

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)四位自然數(shù)滿足個(gè)位與百位相同,十位與千位相同,我們稱這個(gè)數(shù)為雙子數(shù)”.雙子數(shù)的百位、千位上的數(shù)字交換位置,個(gè)位、十位上的數(shù)字也交換位置,得到個(gè)新的雙子數(shù),記雙子數(shù)11數(shù)”.例如,,,則.

1)計(jì)算242411數(shù)______;

2)若雙子數(shù)11數(shù)是一個(gè)完全平方數(shù),求的值;

3)已知兩個(gè)雙子數(shù),其中(其中,,、、都為整數(shù),若11數(shù)能被17整除,且11數(shù)滿足,令,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市為了加強(qiáng)公民的節(jié)氣和用氣意識(shí),按以下規(guī)定收取每月煤氣費(fèi):所用煤氣如果不超過50立方米,按每立方米0.8元收費(fèi);如果超過50立方米,超過部分按每立方米1.2元收費(fèi)設(shè)小麗家每月所用煤氣量為x立方米,應(yīng)交煤氣費(fèi)為y.

1)若小麗家某月所用煤氣量為80立方米,則小麗家該月應(yīng)交煤氣費(fèi)多少元?

2)試寫出yx之間的解析式.

3)若小麗家4月份的煤氣費(fèi)為88元,則她家4月份所用煤氣量為多少立方米?

4)已知小麗家6月份所交的煤氣費(fèi)平均每立方米為0.95元,那么6月份小麗家用了多少立方米的煤氣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,面積為4的正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,邊OA、OC分別在x軸、y軸的正半軸上,點(diǎn)B、P都在函數(shù)y=(x>0)的圖象上,過動(dòng)點(diǎn)P分別作軸x、y軸的平行線,交y軸、x軸于點(diǎn)D、E.設(shè)矩形PDOE與正方形OABC重疊部分圖形的面積為S,點(diǎn)P的橫坐標(biāo)為m.

(1)求k的值;

(2)用含m的代數(shù)式表示CD的長;

(3)求Sm之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A(1,4),B(a,b),其中a>1.過點(diǎn)Ax軸垂線,垂足為C,過點(diǎn)By軸垂線,垂足為D,ACBD交于點(diǎn)E,連接AD,DC,CB.

(1)求k的值;

(2)求證:DCAB;

(3)當(dāng)ADBC時(shí),求直線AB的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn),

(1)求證:△ACE≌△BCD;

(2)若DE=13,BD=12,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中秋節(jié)期間某水庫養(yǎng)殖場為適應(yīng)市場需求,連續(xù)用天時(shí)間,采用每天降低水位以減少捕撈成本的辦法.對水庫中某種鮮魚進(jìn)行捕撈銷售,第天(為整數(shù))的捕撈與銷售的相關(guān)信息如下:

鮮魚銷售單價(jià)(元

單位捕撈成本(元

捕撈量

假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當(dāng)天全部售出.

(1)求第天的收入(元)與(天)之間的函數(shù)關(guān)系式?(當(dāng)天收入日銷售額-日捕撈成本)

(2)在第幾天取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型水果超市銷售無錫水蜜桃,根據(jù)前段時(shí)間的銷售經(jīng)驗(yàn),每天的售價(jià)x(元/箱)與銷售量y(箱)有如表關(guān)系:

每箱售價(jià)x(元)

68

67

66

65


40

每天銷量y(箱)

40

45

50

55


180

已知yx之間的函數(shù)關(guān)系是一次函數(shù).

1)求yx的函數(shù)解析式;

2)水蜜桃的進(jìn)價(jià)是40/箱,若該超市每天銷售水蜜桃盈利1600元,要使顧客獲得實(shí)惠,每箱售價(jià)是多少元?

3)七月份連續(xù)陰雨,銷售量減少,超市決定采取降價(jià)銷售,所以從717號(hào)開始水蜜桃銷售價(jià)格在(2)的條件下,下降了m%,同時(shí)水蜜桃的進(jìn)貨成本下降了10%,銷售量也因此比原來每天獲得1600元盈利時(shí)上漲了2m%m100),7月份(按31天計(jì)算)降價(jià)銷售后的水蜜桃銷售總盈利比7月份降價(jià)銷售前的銷售總盈利少7120元,求m的值.

查看答案和解析>>

同步練習(xí)冊答案