【題目】請完成下面的解答過程.

如圖,∠1=B,∠C=110°,求∠3的度數(shù).

解:∵∠1=B

AD   。(  )

∴∠C+    =180°.(兩直線平行,同旁內(nèi)角互補)

∵∠C=110°,

∴∠2=    °.

∴∠3=    =70°.( 。

【答案】BC,內(nèi)錯角相等,兩直線平行,∠270°,∠2,對頂角相等.

【解析】

依據(jù)內(nèi)錯角相等,兩直線平行,即可得到ADBC,進而得出∠C+2=180°,依據(jù)∠C=110°即可得到∠2=70°,再依據(jù)對頂角相等可得∠3=2=70°.

∵∠1=B,∴ADBC內(nèi)錯角相等,兩直線平行),

∴∠C+2=180°.(兩直線平行,同旁內(nèi)角互補)

∵∠C=110°,∴∠2=70°,∴∠3=2=70°.(對頂角相等

故答案為:BC,內(nèi)錯角相等,兩直線平行,∠2,70°,∠2,對頂角相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)

(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標
(3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側(cè)的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個全等的△ABC和△DEF重疊在一起,固定△ABC,將△DEF進行如下變換:
(1)如圖1,△DEF沿直線CB向右平移(即點F在線段CB上移動),連接AF、AD、BD,請直接寫出S△ABC與S四邊形AFBD的關(guān)系;

(2)如圖2,當點F平移到線段BC的中點時,四邊形AFBD是什么特殊四邊形?請給出證明;

(3)當點F平移到線段BC的中點時,若四邊形AFBD為正方形,猜想△ABC應(yīng)滿足什么條件?請直接寫出結(jié)論:在此條件下,將△DEF沿DF折疊,點E落在FA的延長線上的點G處,連接CG,請在圖3位置畫出圖形,并求出sin∠CGF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測每袋的質(zhì)量是否符合標準,超過或不足的部分分別用正、負數(shù)來表示,記錄如下表:

與標準質(zhì)量的差值
(單位:g

5

2

0

1

3

6

袋 數(shù)

1

4

3

4

5

3

1)這批樣品的平均質(zhì)量比標準質(zhì)量多還是少?多或少幾克?

2)若每袋標準質(zhì)量為450克,則抽樣檢測的總質(zhì)量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)邊長為3的正方形的對角線長為a.下列關(guān)于a的四種說法: ①a是無理數(shù);
②a可以用數(shù)軸上的一個點來表示;
③3<a<4;
④a是18的算術(shù)平方根.
其中,所有正確說法的序號是(
A.①④
B.②③
C.①②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x﹣4與x軸、y軸分別交于M、N兩點,以坐標原點O為圓心的⊙O半徑為2,將⊙O沿x軸向右平移,當⊙O恰好與直線MN相切時,平移的最小距離為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】畫出函數(shù)y=2x+4的圖像,并結(jié)合圖像解決下列問題:

(1)寫出方程2x+4=0的解;

(2)當﹣4≤y時,求相應(yīng)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,CEAB于點F,若∠E=20°C=45°,則∠A的度數(shù)為( 。

A. B. 15° C. 25° D. 35°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=ACA=120,BC=6cmAB的垂直平分線交BC于點M,交AB于點EAC的垂直平分線交BC于點N,交AC于點F,則MN的長為(

A. 1.5cm B. 2cm C. 2.5cm D. 3cm

查看答案和解析>>

同步練習冊答案