【題目】如圖,點E是四邊形ABCD的對角線BD上的一點,∠BAE=∠CBD=∠DAC.
(1)求證:DEAB=BCAE;
(2)求證:∠AED+∠ADC=180°.
【答案】
(1)證明:∵∠BAE=∠DAC,
∴∠BAE+∠EAC=∠DAC+∠EAC,
即∠BAC=∠EAD,
∵∠ABC=∠ABE+∠CBD,
∠AED=∠ABE+∠BAE,
∵∠CBD=∠BAE,
∴∠ABC=∠AED,
∴△ABC∽△AED,
∴ ,
∴DEAB=BCAE
(2)證明:∵△ABC∽△AED,
∴ ,即 ,
∵∠BAE=∠DAC
∴△ABE∽△ACD,
∴∠AEB=∠ADC,
∵∠AED+∠AEB=180°,
∴∠AED+∠ADC=180°
【解析】(1)根據(jù)已知條件得到∠BAC=∠EAD,根據(jù)三角形額外角的性質(zhì)得到∠ABC=∠AED,推出△ABC∽△AED,根據(jù)三角形的外角的性質(zhì)得到結(jié)論;(2)根據(jù)相似三角形的性質(zhì)得到 ,推出△ABE∽△ACD,根據(jù)相似三角形的性質(zhì)得到∠AEB=∠ADC,等量代換即可得到結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解相似三角形的判定與性質(zhì)的相關(guān)知識,掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個施工隊在六安(六盤水﹣安順)城際高鐵施工中,每天甲隊比乙隊多鋪設(shè)100米鋼軌,甲隊鋪設(shè)5天的距離剛好等于乙隊鋪設(shè)6天的距離.若設(shè)甲隊每天鋪設(shè)x米,乙隊每天鋪設(shè)y米.
(1)依題意列出二元一次方程組;
(2)求出甲乙兩施工隊每天各鋪設(shè)多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“420”雅安地震后,某商家為支援災(zāi)區(qū)人民,計劃捐贈帳篷16800頂,該商家備有2輛大貨車、8輛小貨車運送帳篷.計劃大貨車比小貨車每輛每次多運帳篷200頂,大、小貨車每天均運送一次,兩天恰好運完.
(1)求大、小貨車原計劃每輛每次各運送帳篷多少頂?
(2)因地震導(dǎo)致路基受損,實際運送過程中,每輛大貨車每次比原計劃少運200m頂,每輛小貨車每次比原計劃少運300頂,為了盡快將帳篷運送到災(zāi)區(qū),大貨車每天比原計劃多跑 m次,小貨車每天比原計劃多跑m次,一天恰好運送了帳篷14400頂,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣(a+b)x2﹣2cx+a﹣b中,a、b、c是△ABC的三邊.
(1)當(dāng)拋物線與x軸只有一個交點時,判斷△ABC是什么形狀;
(2)當(dāng)x=﹣ 時,該函數(shù)有最大值 ,判斷△ABC是什么形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:我們把兩條中線互相垂直的三角形稱為“中垂三角形”.如圖所示,△ABC中,AF、BE是中線,且AF⊥BE,垂足為P,像△ABC這樣的三角形稱為“中垂三角形”,如果∠ABE=30°,AB=4,那么此時AC的長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c,自變量x與函數(shù)y的對應(yīng)值如表:
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | … |
y | … | 4 | 0 | ﹣2 | ﹣2 | 0 | 4 | … |
下列說法正確的是( )
A.拋物線的開口向下
B.當(dāng)x>﹣3時,y隨x的增大而增大
C.二次函數(shù)的最小值是﹣2
D.拋物線的對稱軸是x=﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙C過原點,且與兩坐標(biāo)軸分別交于點A、點B,點A的坐標(biāo)為(0,3),M是第三象限內(nèi) 上一點,∠BMO=120°,則⊙C的半徑長為( )
A.6
B.5
C.3
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(4m+1)x+2m﹣1=0;
(1)求證:不論m 任何實數(shù),方程總有兩個不相等的實數(shù)根;
(2)若方程的兩根為x1、x2且滿足 ,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想測量一棵樹的高度,他發(fā)現(xiàn)樹的影子恰好落在地面和一斜坡上,如圖,此時測得地面上的影長為8米,坡面上的影長為4米.已知斜坡的坡角為30°,同一時刻,一根長為1米且垂直于地面放置的標(biāo)桿在地面上的影長為2米,則樹的高度為( )
A.(6+ )米
B.12米
C.(4﹣2 )米
D.10米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com