【題目】如圖鋼架中,∠A=15°,現(xiàn)焊上與AP1等長的鋼條P1P2,P2P3…來加固鋼架,若最后一根鋼條與射線AB的焊接點P到A點的距離為4+2,則所有鋼條的總長為( 。
A.16B.15C.12D.10
【答案】D
【解析】
根據(jù)已知利用等腰三角形的性質及三角形外角的性質,找出圖中存在的規(guī)律,求出鋼條的根數(shù),然后根據(jù)最后一根鋼條與射線AB的焊接點P到A點的距離即AP5為4+2,設AP1=a,作P2D⊥AB于點D,再用含a的式子表示出P1P3,P3P5,從而可求出a的值,即得出每根鋼條的長度,從而可以求得所有鋼條的總長.
解:如圖,∵AP1與各鋼條的長度相等,∴∠A=∠P1P2A=15°,
∴∠P2P1P3=30°,∴∠P1P3P2=30°,∴∠P3P2P4=45°,
∴∠P3P4P2=45°,∴∠P4P3P5=60°,∴∠P3P5P4=60°,
∴∠P5P4P6=75°,∴∠P4P6P5=75°,∴∠P6P5B=90°,
此時就不能再往上焊接了,綜上所述總共可焊上5根鋼條.
設AP1=a,作P2D⊥AB于點D,
∵∠P2P1D=30°,∴P2D=P1P2,∴P1D=a,
∵P1P2=P2P3,∴P1P3=2P1D =a,
∵∠P4P3P5=60°,P3P4=P4P5,∴△P4P3P5是等邊三角形,∴P3P5=a,
∵最后一根鋼條與射線AB的焊接點P到A點的距離為4+2,
∴AP5=a+a+a=4+2,
解得,a=2,
∴所有鋼條的總長為2×5=10,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=14,AD=8,點E是CD的中點,DG平分∠ADC交AB于點G,過點A作AF⊥DG于點F,連接EF,則EF的長為( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“文明禮儀”在人們長期生活和交往中逐漸形成,并以風俗、習慣等方式固定下來的.我們作為具有五千年文明史的“禮儀之邦”,更應該用文明的行為舉止, 合理的禮儀來待人接物.為促進學生弘揚民族文化、展示民族精神,某學校開展“文明禮儀”演講比賽,八年級(1)班,八年級(2)班各派出 5 名選手參加比賽,成績如圖所示.
(1)根據(jù)圖,完成表格:
平均數(shù)(分) | 中位數(shù)(分) | 極差(分) | 方差 | |
八年級(1)班 | 75 |
| 25 |
|
八年級(2)班 | 75 | 70 |
| 160 |
(2)結合兩班選手成績的平均分和方差,分析兩個班級參加比賽選手的成績;
(3)如果在每班參加比賽的選手中分別選出3人參加決賽,從平均分看,你認為哪個班的實力更強一些? 說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動滾動,每旋轉60°為滾動1次,那么當正六邊形ABCDEF滾動2017次時,點F的坐標是( 。
A. (2017,0) B. (2017,)
C. (2018,) D. (2018,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以△ABC的各邊,在邊BC的同側分別作三個正方形ABDI,BCFE,ACHG.
(1)求證:△BDE≌△BAC;
(2)求證:四邊形ADEG是平行四邊形.
(3)直接回答下面兩個問題,不必證明:
①當△ABC滿足條件_____________________時,四邊形ADEG是矩形.
②當△ABC滿足條件_____________________時,四邊形ADEG是正方形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△CBD中,CD=BD,CD⊥BD,BE平分∠CBA交CD于點F,CE⊥BE垂足是E,CE的延長線與BD交于點A.
(1)求證:BF=AC;
(2)求證:BE是AC的中垂線;
(3)若BD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關注,某校學生會為了解節(jié)能減排、垃圾分類知識
的普及情況,隨機調查了部分學生,調查結果分為“非常了解”“了解”“了解較少”“不了解”四類,
并將檢查結果繪制成下面兩個統(tǒng)計圖.
(1)本次調查的學生共有__________人,估計該校1200 名學生中“不了解”的人數(shù)是__________人.
(2)“非常了解”的4 人有兩名男生, 兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD⊥BC于D,BE⊥AC于F,BE交AD于F,BF=AC,
(1)求證:FD=CD;
(2)連DE,求證:ED平分∠BEC;
(3)在(2)條件下,點P在AC上,連BP、DP,BP交AD于Q, BP平分∠EBC,∠BPD=∠BFD,△APQ的面積為4,求線段PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,已知A(-1,2),B(-3,1),C(-4,3).
(1)作△ABC關于x軸的對稱圖形△A1B1C1,寫出點C關于x軸的對稱點C1的坐標;
(2)作△ABC關于直線l1:y=-2(直線l1上各點的縱坐標都為-2)的對稱圖形△A2B2C2,寫出點C關于直線l1的對稱點C2的坐標.
(3)作△ABC關于直線l2:x=1(直線l2上各點的橫坐標都為1)的對稱圖形△A3B3C3,寫出點C關于直線l2的對稱點C3的坐標.
(4)點P(m,n)為坐標平面內任意一點,直接寫出:
點P關于直線x=a(直線上各點的橫坐標都為a)的對稱點P1的坐標;
點P關于直線y=b(直線上各點的縱坐標都為b)的對稱點P2的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com