【題目】如圖,ACBECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.

(1)求證:AD=BE;

(2)求∠AEB的度數(shù).

【答案】(1)證明見解析;(2)AEB=60°.

【解析】(1)根據(jù)等邊三角形的性質(zhì)得出AC=BC,CD=CE,∠ACB=∠DCE=60°,求出ACD=∠BCE然后根據(jù)SAS證明△ACD≌△BCE,即可得出AD=BE

(2)ECD是等邊三角形可得∠CDE=CED=60°,根據(jù)補(bǔ)角的性質(zhì)可求∠ADC=120°,根據(jù)全等三角形的性質(zhì)可得∠BEC=ADC=120°,進(jìn)而根據(jù)∠AEB=BEC﹣∠CED可得出答案.

證明:(1)∵△ACBECD都是等邊三角形,

AC=BC,CD=CE,ACB=DCE=60°,

又∵∠ACD=ACB﹣DCB,BCE=DCE﹣DCB,

∴∠ACD=BCE,

ACDBCE中,

∴△ACD≌△BCE(SAS).

AD=BE;

(2)在等邊ECD中,

CDE=CED=60°,

∴∠ADC=120°,

∵△ACD≌△BCE,

∴∠BEC=ADC=120°,

∴∠AEB=BEC﹣CED=120°﹣60°=60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠D=90°,AC平分∠DAB,且點(diǎn)C在以AB為直徑的⊙O上.
(1)求證:CD是⊙O的切線;
(2)點(diǎn)E是⊙O上一點(diǎn),連接BE,CE.若∠BCE=42°,cos∠DAC= ,AC=m,寫出求線段CE長的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,AB=AC,D為直線BC上一點(diǎn),E為直線AC上一點(diǎn),AD=AE,設(shè)∠BAD=α,∠CDE=β.

(1)如圖,若點(diǎn)D在線段BC上,點(diǎn)E在線段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°.②求α,β之間的關(guān)系式.
(2)是否存在不同于以上②中的α,β之間的關(guān)系式?若存在,請求出這個(gè)關(guān)系式(求出一個(gè)即可);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)團(tuán)委會(huì)開展書法、誦讀、演講、征文四個(gè)項(xiàng)目(每人只參加一個(gè)項(xiàng)目)的比賽,初三(1)班全體同學(xué)都參加了比賽,為了解比賽的具體情況,小明收集整理數(shù)據(jù)后,繪制了以下不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,根據(jù)圖表中的信息解答下列各題:
(1)初三(1)班的總?cè)藬?shù)為 , 扇形統(tǒng)計(jì)圖中“征文”部分的圓心角度數(shù)為度;
(2)請把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)平平和安安兩個(gè)同學(xué)參加了比賽,請用“列表法”或“畫樹狀圖法”,求出他們參加的比賽項(xiàng)目相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角三角板的直角頂點(diǎn)C按如圖方式疊放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.

(1)①若∠DCB=45°,則∠ACB的度數(shù)為   

若∠ACB=140°,則∠DCE的度數(shù)為   

(2)(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.

(3)當(dāng)∠ACE<90°且點(diǎn)E在直線AC的上方時(shí),當(dāng)這兩塊三角尺有一組邊互相平行時(shí),請直接寫出∠ACE角度所有可能的值(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),各自到達(dá)終點(diǎn)后停止行駛。設(shè)慢車行駛的時(shí)間為x(h),兩車之間的距離為y(km),圖中的折線表示yx之間的函數(shù)關(guān)系,則兩車相遇之后又經(jīng)過___________小時(shí),兩車相距720km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“經(jīng)過已知直線外一點(diǎn)作這條直線的平行線”的尺規(guī)作圖過程.
已知:如圖1,直線l和直線l外一點(diǎn)P.
求作:直線l的平行直線,使它經(jīng)過點(diǎn)P.
作法:如圖2.

(i)過點(diǎn)P作直線m與直線l交于點(diǎn)O;
(ii)在直線m上取一點(diǎn)A(OA<OP),以點(diǎn)O為圓心,OA長為半徑畫弧,與直線l交于點(diǎn)B;
(iii)以點(diǎn)P為圓心,OA長為半徑畫弧,交直線m于點(diǎn)C,以點(diǎn)C為圓心,AB長為半徑畫弧,兩弧交于點(diǎn)D;
(iv)作直線PD.
所以直線PD就是所求作的平行線.
請回答:該作圖的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(感知)如圖①,ABCD,點(diǎn)E在直線ABCD之間,連結(jié)AE、BE,試說明∠BEE+DCE=AEC.下面給出了這道題的解題過程,請完成下面的解題過程,并填空(理由或數(shù)學(xué)式):

解:如圖①,過點(diǎn)EEFAB

∴∠BAE=1(   

ABCD(   

CDEF(   

∴∠2=DCE

∴∠BAE+DCE=1+2(   

∴∠BAE+DCE=AEC

(探究)當(dāng)點(diǎn)E在如圖②的位置時(shí),其他條件不變,試說明∠AEC+FGC+DCE=360°;

(應(yīng)用)點(diǎn)E、F、G在直線ABCD之間,連結(jié)AE、EF、FGCG,其他條件不變,如圖③.若∠EFG=36°,則∠BAE+AEF+FGC+DCG=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過點(diǎn)(-3,-2).

(1)求這個(gè)函數(shù)表達(dá)式;

(2)判斷(-5,3)是否在這個(gè)函數(shù)的圖象上

(3)點(diǎn)M在直線y=kx+4上且到y軸的距離是3,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案