【題目】(一)閱讀
求x+6x+11的最小值.
解:x+6x+11
=x2+6x+9+2
=(x+3)2+2
由于(x+3)2的值必定為非負(fù)數(shù),所以(x+3)2+2,即x2+6x+11的最小值為2.
(二)解決問題
(1)若m2+2mn+2n2-6n+9=0,求()-3的值;
(2)對于多項式x2+y-2x+2y+5,當(dāng)x,y取何值時有最小值,最小值為多少?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點的坐標(biāo)為,點在軸上,將沿軸負(fù)方向平移,平移后的圖形為,且點的坐標(biāo)為.
直接寫出點的坐標(biāo);
在四邊形中,點從點出發(fā),沿移動,若點的速度為每秒個單位長度,運動時間為秒,回答下列問題:
_ ___秒時,點的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
用含有的式子表示點的坐標(biāo).
當(dāng)秒秒時,設(shè)探索之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的周長是12,D是AC邊上的中點,點E在BC邊的延長線上,如果DE=DB,那么CE的長是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AC∥BD,請先作圖再解決問題.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡.(不要求寫作法)
①作BE平分∠ABD交AC于點E;
②在BA的延長線上截取AF=BA,連接EF;
(2)判斷△BEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,點O是△ABC內(nèi)的一點,∠BOC=130°.
(1)由已知條件可知哪兩個三角形全等__________,理由_________.
(2)求∠DCO的大小.
(3)設(shè)∠AOB=α,那么當(dāng)α為多少度時,△COD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,
(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度數(shù)
(2)寫出∠DAE與∠C-∠B的數(shù)量關(guān)系,并證明你的結(jié)論
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要建造一個四邊形花圃ABCD,要求AD邊靠墻,CD⊥AD,AD∥BC,AB∶CD=5∶4,且三邊的總長為20 m.設(shè)AB的長為5x m.
(1)請求AD的長;(用含字母x的式子表示)
(2)若該花圃的面積為50 m2,且周長不大于30 m,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com