【題目】如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,
(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度數(shù)
(2)寫出∠DAE與∠C-∠B的數(shù)量關(guān)系,并證明你的結(jié)論
【答案】(1)10°;(2)∠DAE=(∠C-∠B),證明見解析.
【解析】
(1)利用三角形內(nèi)角和定理求得∠BAC=100°,根據(jù)角平分線定義可知∠EAC=∠BAC,再利用三角形內(nèi)角和先求出∠DAC,再求得∠DAE;
(2)按照(1)中思路,進(jìn)行推導(dǎo)即可解決問題.
(1)解:∵∠B=30°,∠C=50°,
∴∠BAC=180°-∠B-∠C=100°,
∵AE平分∠BAC,
∴∠EAC=∠BAC=50°
∵AD是高,
∴∠ADC=90°,
∴∠DAC=180°-∠ADC-∠C=180°-90°-50°=40°
∴∠DAE=∠EAC-∠DAC=50°-40°=10°
(2)解:∠BAC=180°-∠B-∠C,
∵AE平分∠BAC,
∴∠EAC=∠BAC=(180°-∠B-∠C)
∵AD是高,
∴∠ADC=90°,
∴∠DAC=180°-∠ADC-∠C=180°-90°-∠C=90°-∠C,
∴∠DAE=∠EAC-∠DAC=(180°-∠B-∠C)-(90°-∠C)
=(∠C-∠B)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(一)閱讀
求x+6x+11的最小值.
解:x+6x+11
=x2+6x+9+2
=(x+3)2+2
由于(x+3)2的值必定為非負(fù)數(shù),所以(x+3)2+2,即x2+6x+11的最小值為2.
(二)解決問題
(1)若m2+2mn+2n2-6n+9=0,求()-3的值;
(2)對(duì)于多項(xiàng)式x2+y-2x+2y+5,當(dāng)x,y取何值時(shí)有最小值,最小值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別在線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是_______(只填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=-的圖象的兩個(gè)分支分布在第_________象限,在每個(gè)象限內(nèi),y隨x的增大而_________,函數(shù)y=的圖象的兩個(gè)分支分布在第_________象限,在每一個(gè)象限內(nèi),y隨x的減小而_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是的外角平分線上一點(diǎn),且滿足,過點(diǎn)作于點(diǎn),交的延長線于點(diǎn),則下列結(jié)論:①;②;③;④.
其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兒童節(jié)期間,某公園游戲場舉行一場活動(dòng).有一種游戲的規(guī)則是:在一個(gè)裝有8個(gè)紅球和若干白球(每個(gè)球除顏色外,其他都相同)的袋中,隨機(jī)摸一個(gè)球,摸到一個(gè)紅球就得到一個(gè)海寶玩具.已知參加這種游戲的兒童有40 000人,公園游戲場發(fā)放海寶玩具8 000個(gè).
(1)求參加此次活動(dòng)得到海寶玩具的頻率?
(2)請(qǐng)你估計(jì)袋中白球的數(shù)量接近多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的周長是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點(diǎn)D,且OD=3,則△ABC的面積是( 。
A. 20 B. 25 C. 30 D. 35
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com