【題目】如圖,在Rt△ABC中,∠C=90°.點O是AB的中點,邊AC=6,將邊長足夠大的三角板的直角頂點放在點O處,將三角板繞點0旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點為點E,另條直角邊與BC相交,交點為D,則等腰直角三角板的直角邊被三角板覆蓋部分的兩條線段CD與CE的長度之和為_____.
【答案】6.
【解析】
連接OC,證明△OCD≌△OBE,根據(jù)全等三角形的性質(zhì)得到CD=BE即可解決問題;
連接OC.
∵AC=BC,AO=BO,∠ACB=90°,
∴∠ACO=∠BCO=∠ACB=45°,OC⊥AB,∠A=∠B=45°,
∴OC=OB,
∵∠BOD+∠EOD+∠AOE=180°,∠EOD=90°,
∴∠BOD+∠AOE=90°,
又∵∠COE+∠AOE=90°,
∴∠BOD=∠COE,
在△OCE和△OBD中,
,
∴△OCE≌△OBD(ASA),
∴CE=BD,
∴CE+CD=BD+CD=BC═AC=6.
故答案為:6.
點睛】本題考查旋轉(zhuǎn)變換、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】(8分)如圖,AC是⊙O的直徑,OB是⊙O的半徑,PA切⊙O于點A,PB與AC的延長線交于點M,∠COB=∠APB.
(1)求證:PB是⊙O的切線;
(2)當OB=3,PA=6時,求MB,MC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩隊參加了“端午情,龍舟韻”賽龍舟比賽,兩隊在比賽時的路程(米)與時間(秒)之間的函數(shù)圖象如圖所示,請你根據(jù)圖象判斷,下列說法正確的是( )
A. 乙隊率先到達終點
B. 甲隊比乙隊多走了米
C. 在秒時,兩隊所走路程相等
D. 從出發(fā)到秒的時間段內(nèi),乙隊的速度慢
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點F,則∠BFC為( 。
A. 75°B. 60°C. 55°D. 45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜邊OB=4,將Rt△OAB繞點O順時針旋轉(zhuǎn)60°,如題圖1,連接BC.
(1)填空:∠OBC= °;
(2)如圖1,連接AC,作OP⊥AC,垂足為P,求OP的長度;
(3)如圖2,點M,N同時從點O出發(fā),在△OCB邊上運動,M沿O→C→B路徑勻速運動,N沿O→B→C路徑勻速運動,當兩點相遇時運動停止,已知點M的運動速度為1.5單位/秒,點N的運動速度為1單位/秒,設運動時間為x秒,△OMN的面積為y,求當x為何值時y取得最大值?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(﹣2,1),B(1,0),將線段AB繞著點B順時針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在ABCD中,延長DA到點E,延長BC到點F,使得AE=CF,連接EF,分別交AB,CD于點M,N,連接DM,BN.
(1)求證:△AEM≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題的逆命題為假命題的是( )
A.如果一元二次方程沒有實數(shù)根,那么.
B.線段垂直平分線上任意一點到這條線段兩個端點的距離相等.
C.如果兩個數(shù)相等,那么它們的平方相等.
D.直角三角形兩條直角邊的平方和等于斜邊的平方.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結(jié)論:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正確的是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com