【題目】甲、乙兩隊(duì)參加了“端午情,龍舟韻”賽龍舟比賽,兩隊(duì)在比賽時(shí)的路程(米)與時(shí)間(秒)之間的函數(shù)圖象如圖所示,請(qǐng)你根據(jù)圖象判斷,下列說法正確的是( 。
A. 乙隊(duì)率先到達(dá)終點(diǎn)
B. 甲隊(duì)比乙隊(duì)多走了米
C. 在秒時(shí),兩隊(duì)所走路程相等
D. 從出發(fā)到秒的時(shí)間段內(nèi),乙隊(duì)的速度慢
【答案】C
【解析】
根據(jù)函數(shù)圖形,結(jié)合選項(xiàng)進(jìn)行判斷,即可得到答案.
解:、由函數(shù)圖象可知,甲走完全程需要秒,乙走完全程需要秒,甲隊(duì)率先到達(dá)終點(diǎn),本選項(xiàng)錯(cuò)誤;
、由函數(shù)圖象可知,甲、乙兩隊(duì)都走了米,路程相同,本選項(xiàng)錯(cuò)誤;
、由函數(shù)圖象可知,在秒時(shí),兩隊(duì)所走路程相等,均為米,本選項(xiàng)正確;
、由函數(shù)圖象可知,從出發(fā)到秒的時(shí)間段內(nèi),甲隊(duì)的速度慢,本選項(xiàng)錯(cuò)誤;
故選:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由大小相同的棱長(zhǎng)為的小正方體搭成的幾何體,
請(qǐng)分別畫出它的從正面、左面、上面看到的形狀圖.
擺成如圖的形狀后,表面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=4,面積是16,AC的垂直平分線EF分別交AC,AB邊于點(diǎn)E、F,若點(diǎn)D為BC邊上的中點(diǎn),點(diǎn)M為線段EF一動(dòng)點(diǎn),則△CDM周長(zhǎng)的最小值為( )
A.4B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,點(diǎn)O是坐標(biāo)原點(diǎn),一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(1,m)、B(n,1)兩點(diǎn).
(1)求直線AB的解析式;
(2)根據(jù)圖象寫出當(dāng)y1>y2時(shí),x的取值范圍;
(3)若點(diǎn)P在y軸上,求PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的邊長(zhǎng)為4,點(diǎn)是△的中心,.繞點(diǎn)旋轉(zhuǎn),分別交線段于兩點(diǎn),連接,給出下列四個(gè)結(jié)論:①;②;③四邊形的面積始終等于;④△周長(zhǎng)的最小值為6,上述結(jié)論中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:
(1)這次活動(dòng)共調(diào)查了 人;在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題解決)
一節(jié)數(shù)學(xué)課上,老師提出了這樣一個(gè)問題:如圖1,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?
小明通過觀察、分析、思考,形成了如下思路:
思路一:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到△BP′A,連接PP′,求出∠APB的度數(shù);
思路二:將△APB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到△CP'B,連接PP′,求出∠APB的度數(shù).
請(qǐng)參考小明的思路,任選一種寫出完整的解答過程.
(類比探究)
如圖2,若點(diǎn)P是正方形ABCD外一點(diǎn),PA=3,PB=1,PC=,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°.點(diǎn)O是AB的中點(diǎn),邊AC=6,將邊長(zhǎng)足夠大的三角板的直角頂點(diǎn)放在點(diǎn)O處,將三角板繞點(diǎn)0旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點(diǎn)為點(diǎn)E,另?xiàng)l直角邊與BC相交,交點(diǎn)為D,則等腰直角三角板的直角邊被三角板覆蓋部分的兩條線段CD與CE的長(zhǎng)度之和為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以∠AOB的頂點(diǎn)O為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長(zhǎng)為半徑畫弧,兩弧在∠AOB內(nèi)部交于點(diǎn)E,過點(diǎn)E作射線OE,連接CD.則下列說法錯(cuò)誤的是
A.射線OE是∠AOB的平分線
B.△COD是等腰三角形
C.C、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱
D.O、E兩點(diǎn)關(guān)于CD所在直線對(duì)稱
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com