【題目】甲、乙兩隊(duì)參加了端午情,龍舟韻賽龍舟比賽,兩隊(duì)在比賽時(shí)的路程(米)與時(shí)間(秒)之間的函數(shù)圖象如圖所示,請(qǐng)你根據(jù)圖象判斷,下列說法正確的是( 。

A. 乙隊(duì)率先到達(dá)終點(diǎn)

B. 甲隊(duì)比乙隊(duì)多走了

C. 秒時(shí),兩隊(duì)所走路程相等

D. 從出發(fā)到秒的時(shí)間段內(nèi),乙隊(duì)的速度慢

【答案】C

【解析】

根據(jù)函數(shù)圖形,結(jié)合選項(xiàng)進(jìn)行判斷,即可得到答案.

解:、由函數(shù)圖象可知,甲走完全程需要秒,乙走完全程需要秒,甲隊(duì)率先到達(dá)終點(diǎn),本選項(xiàng)錯(cuò)誤;

、由函數(shù)圖象可知,甲、乙兩隊(duì)都走了米,路程相同,本選項(xiàng)錯(cuò)誤;

、由函數(shù)圖象可知,在秒時(shí),兩隊(duì)所走路程相等,均為米,本選項(xiàng)正確;

、由函數(shù)圖象可知,從出發(fā)到秒的時(shí)間段內(nèi),甲隊(duì)的速度慢,本選項(xiàng)錯(cuò)誤;

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由大小相同的棱長(zhǎng)為的小正方體搭成的幾何體,

請(qǐng)分別畫出它的從正面、左面、上面看到的形狀圖.

擺成如圖的形狀后,表面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=ACBC=4,面積是16AC的垂直平分線EF分別交AC,AB邊于點(diǎn)EF,若點(diǎn)DBC邊上的中點(diǎn),點(diǎn)M為線段EF一動(dòng)點(diǎn),則CDM周長(zhǎng)的最小值為(

A.4B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,點(diǎn)O是坐標(biāo)原點(diǎn),一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(1,m)、B(n,1)兩點(diǎn).

(1)求直線AB的解析式;

(2)根據(jù)圖象寫出當(dāng)y1>y2時(shí),x的取值范圍;

(3)若點(diǎn)Py軸上,求PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的邊長(zhǎng)為4,點(diǎn)的中心,.繞點(diǎn)旋轉(zhuǎn),分別交線段兩點(diǎn),連接,給出下列四個(gè)結(jié)論:;;③四邊形的面積始終等于;④△周長(zhǎng)的最小值為6,上述結(jié)論中正確的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:

(1)這次活動(dòng)共調(diào)查了   人;在扇形統(tǒng)計(jì)圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題解決)

一節(jié)數(shù)學(xué)課上,老師提出了這樣一個(gè)問題:如圖1,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?

小明通過觀察、分析、思考,形成了如下思路:

思路一:將BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到BP′A,連接PP′,求出∠APB的度數(shù);

思路二:將APB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到CP'B,連接PP′,求出∠APB的度數(shù).

請(qǐng)參考小明的思路,任選一種寫出完整的解答過程.

(類比探究)

如圖2,若點(diǎn)P是正方形ABCD外一點(diǎn),PA=3,PB=1,PC=,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°.點(diǎn)OAB的中點(diǎn),邊AC6,將邊長(zhǎng)足夠大的三角板的直角頂點(diǎn)放在點(diǎn)O處,將三角板繞點(diǎn)0旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點(diǎn)為點(diǎn)E,另?xiàng)l直角邊與BC相交,交點(diǎn)為D,則等腰直角三角板的直角邊被三角板覆蓋部分的兩條線段CDCE的長(zhǎng)度之和為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AOB的頂點(diǎn)O為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長(zhǎng)為半徑畫弧,兩弧在AOB內(nèi)部交于點(diǎn)E,過點(diǎn)E作射線OE,連CD.則下列說法錯(cuò)誤的是

A.射線OEAOB的平分線

BCOD是等腰三角形

CC、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱

DOE兩點(diǎn)關(guān)于CD所在直線對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案