【題目】文山州某中學(xué)為普遍提高學(xué)生身體素質(zhì),開展每天“陽光體育一小時(shí)”活動(dòng),根據(jù)實(shí)際情況決定開設(shè)A、籃球;B、乒乓球;C、羽毛球;D、足球四種運(yùn)動(dòng)項(xiàng)目,為了解學(xué)生最喜歡哪一種運(yùn)動(dòng)項(xiàng)目,隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查,每名學(xué)生必須且只能選擇最喜愛的一項(xiàng)運(yùn)動(dòng)項(xiàng)目,并將調(diào)查結(jié)果制作成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中的信息解答下列問題:
(1)這次被抽查的學(xué)生有人;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在統(tǒng)計(jì)圖中,“乒乓球”對(duì)應(yīng)扇形的圓心角是度;
(3)若該中學(xué)共有3600名學(xué)生,喜歡籃球的學(xué)生約有多少人?
【答案】(1)60,圖形詳見解析;(2)144;(3)1260.
【解析】
(1)結(jié)合條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,利用C組人數(shù)9除以C組所占比例15%,即可得到該校本次被調(diào)查的學(xué)生人數(shù);利用總?cè)藬?shù)減去A、B、C組的人數(shù)即可的D組的人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖;
(2)用B組人數(shù)除以總?cè)藬?shù)再乘以360°即可得到結(jié)論;
(3)用3600乘以抽查的人中喜歡籃球運(yùn)動(dòng)項(xiàng)目的人數(shù)所占的百分比即可.
(1)∵喜歡羽毛球(C)的有9人,占15%,∴總?cè)藬?shù)=9÷15%=60(人);∴喜歡足球(D)的人數(shù)為:60-(21+24+9)=6(人),補(bǔ)全條形統(tǒng)計(jì)圖如下:
(2)∵喜歡乒乓球(B)的人數(shù)為24人,總?cè)藬?shù)為60人,∴“乒乓球”對(duì)應(yīng)扇形的圓心角是360°×=144°;
(3)3600×=1260(人).
答:該中學(xué)共有3600名學(xué)生,喜歡籃球的學(xué)生約有1260人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只小貓被關(guān)在正方形ABCD區(qū)域內(nèi),點(diǎn)O是對(duì)角線的交點(diǎn),∠MON=90°,OM、ON分別交線段AB、BC于M、N兩點(diǎn),則小貓停留在陰影區(qū)域的概率為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某年的日歷表,在此日歷表上可以用一個(gè)矩形圈出3×3個(gè)位置的9個(gè)數(shù)(如3,4,5,10,11,12,17,18,19).若用這樣的矩形圈圈這張日歷表的9個(gè)數(shù),則圈出的9個(gè)數(shù)的和不可能為下列數(shù)中的( 。
A. 81 B. 90 C. 108 D. 216
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形A1B1C1D1、A2B2C2D2……按照如圖所示的方式放置,點(diǎn)A1、A2、A3、…和點(diǎn)C1、C2、C3、…分別在直線y=kx+b(k>0)和x軸上,已知B1(1,1),B2(3,2),B3(7,4)則B2018的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,射線OM平分∠AOC,ON⊥OM.
(1)若∠BOD=70°,求∠AOM和∠CON的度數(shù);
(2)若∠BON=50°,求∠AOM和∠CON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于點(diǎn)E,BE的延長(zhǎng)線交CD于點(diǎn)F,且∠1+∠2=90°.猜想∠2與∠3的關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于點(diǎn)E,BE的延長(zhǎng)線交CD于點(diǎn)F,且∠1+∠2=90°.猜想∠2與∠3的關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD頂點(diǎn)A、B在x軸上,點(diǎn)D在y軸上,函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)C(2,3),直線AD交雙曲線于點(diǎn)E,并且EB⊥x軸,CD⊥y軸,EB與CD交于點(diǎn)F.
(1)若EB= OD,求點(diǎn)E的坐標(biāo);
(2)若四邊形ABCD為平行四邊形,求過A、D兩點(diǎn)的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com