【題目】如圖,平行四邊形ABCD中,E是AB的中點(diǎn),CE和BD交于點(diǎn)O,如△ODC的面積為4,則四邊形AEOD的面積是( 。
A. 3 B. 4 C. 5 D. 6
【答案】C
【解析】
根據(jù)平行四邊形的性質(zhì)可得出CD∥BE、CD=AB,進(jìn)而可得出△COD∽△EOB,根據(jù)相似三角形的性質(zhì)可求出S△EOB和的值,由三角形的面積可得出S△BCD=S△COD=6,再根據(jù)平行四邊形的性質(zhì)結(jié)合S四邊形AEOD=S△ABD-S△EOB,即可求出四邊形AEOD的面積.
解:∵四邊形ABCD為平行四邊形,
∴CD∥BE,CD=AB,
∴△COD∽△EOB,
∴=()2.
∵E是AB的中點(diǎn),
∴AB=2BE,
∴CD=2BE,
∴=22=4,=2,
∴S△EOB=1,BD=BO+OD=OD,
∴S△BCD=S△COD=6.
∵四邊形ABCD為平行四邊形,
∴S△ABD=S△BCD=6,
∴S四邊形AEOD=S△ABD-S△EOB=6-1=5.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C、E和B、D、F分別在∠GAH的兩邊上,且AB=BC=CD=DE=EF,若∠A=18°,則∠GEF的度數(shù)是( )
A. 80° B. 90° C. 100° D. 108°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦經(jīng)銷商計(jì)劃購(gòu)進(jìn)一批電腦機(jī)箱和液晶顯示器,若購(gòu)電腦機(jī)箱10臺(tái)和液液晶顯示器8臺(tái),共需要資金7000元;若購(gòu)進(jìn)電腦機(jī)箱2臺(tái)和液示器5臺(tái),共需要資金4120元.
(1)每臺(tái)電腦機(jī)箱、液晶顯示器的進(jìn)價(jià)各是多少元?
(2)該經(jīng)銷商購(gòu)進(jìn)這兩種商品共50臺(tái),而可用于購(gòu)買這兩種商品的資金不超過22240元.根據(jù)市場(chǎng)行情,銷售電腦機(jī)箱、液晶顯示器一臺(tái)分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤(rùn)不少于4100元.試問:該經(jīng)銷商有哪幾種進(jìn)貨方案?哪種方案獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程mx2﹣(2m﹣2)x+m=0有實(shí)根.
(1)求m的取值范圍;
(2)若原方程兩個(gè)實(shí)數(shù)根為x1,x2,是否存在實(shí)數(shù)m,使得=1?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2016年“雙十一”期間,某快遞公司計(jì)劃租用甲、乙兩種車輛快遞貨物,從貨物量來計(jì)算:若租用兩種車輛合運(yùn),10天可以完成任務(wù);若單獨(dú)租用乙種車輛,完成任務(wù)的天數(shù)是單獨(dú)租用甲種車輛完成任務(wù)天數(shù)的2倍.
(1)求甲、乙兩種車輛單獨(dú)完成任務(wù)分別需要多少天?
(2)已知租用甲、乙兩種車輛合運(yùn)需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨(dú)租甲種車輛、單獨(dú)租乙種車輛這三種租車方案中,哪一種租金最少?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線y=2kx-2k (k>0)交y軸于點(diǎn)B,與直線y=kx交于點(diǎn)A.
(1)求點(diǎn)A的橫坐標(biāo);
(2)直接寫出的x的取值范圍;
(3)若P(0,3)求PA+OA的最小值,并求此時(shí)k的值;
(4)若C(0,2)以A,B,C,D為頂點(diǎn)的四邊形是以BC為一條邊的菱形,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
①; ②; ③……
根據(jù)上述規(guī)律解決下列問題:
(1)完成第四個(gè)等式: ;
(2)猜想第個(gè)等式(用含的式子表示),并證明其正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:
(1)計(jì)算判斷:(計(jì)算并判斷大小,填寫符號(hào):“>”“<”或“=”)
①當(dāng),時(shí),_____;
②當(dāng),時(shí),_____;
③當(dāng),時(shí),______;
④當(dāng),時(shí),______;
⑤當(dāng),時(shí),______;
⑥當(dāng),時(shí),_______;
…
(2)歸納猜想:猜想并寫出關(guān)于與(,是常數(shù),且,)之間的數(shù)量關(guān)系;
(3)探究證明:請(qǐng)補(bǔ)全以下證明過程:
證明:根據(jù)一個(gè)實(shí)數(shù)的平方是非負(fù)數(shù),可得,
∴,
∵,,
…
(4)實(shí)踐應(yīng)用:要制作面積為的長(zhǎng)方形(或正方形)框架,直接利用探究得出的結(jié)論,求出框架周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,任意一個(gè)有理數(shù)與無理數(shù)的和為無理數(shù),任意一個(gè)不為零的有理數(shù)與一個(gè)無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果mx+n=0,其中m、n為有理數(shù),x為無理數(shù),那么m=0且n=0.
(1)如果,其中a、b為有理數(shù),那么a= ,b= .
(2)如果,其中a、b為有理數(shù),求a+2b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com