【題目】已知:如圖,等腰直角三角形ABC中,∠BAC=90°,BA=AC,點(diǎn)E、F是線段BC上兩動(dòng)點(diǎn)且∠EAF=45°,請(qǐng)寫出BE、EF、FC之間的等量關(guān)系并證明.
【答案】BE2+ FC2= EF2,證明見解析.
【解析】
將△ABE逆時(shí)針旋轉(zhuǎn)90度到△ACD的位置,點(diǎn)B、E的對(duì)應(yīng)點(diǎn)為點(diǎn)C、D,首先證明∠EAF=∠FAD=45°,然后利用SAS證明△AEF≌△ADF,得到EF=DF,求出∠FCD=90°,根據(jù)勾股定理可得結(jié)論.
BE2+ FC2= EF2,
證明:如圖,將△ABE逆時(shí)針旋轉(zhuǎn)90度到△ACD的位置,點(diǎn)B、E的對(duì)應(yīng)點(diǎn)為點(diǎn)C、D,
∴AE=AD,∠BAE=∠CAD,BE=CD,
∵∠EAF=45°,
∴∠BAE+∠FAC=45°,
∴∠CAD +∠FAC=45°,
∴∠EAF=∠FAD=45°,
又∵AE=AD,AF=AF,
∴△AEF≌△ADF(SAS),
∴EF=DF,
∵∠ACD=∠ABE=∠ACB=45°,
∴∠FCD=90°,
∴FC2+CD2=DF2,即BE2+ FC2= EF2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊△ABC 的邊長(zhǎng)為 4,AD 是 BC 邊上的中線,F 是邊 AD 上的動(dòng)點(diǎn),E 是邊 AC 上的點(diǎn), 當(dāng) AE=2,且 EF+CF 取得最小值時(shí).
(Ⅰ)能否求出∠ECF 的度數(shù)?_____(用“能”或“否”填空);
(Ⅱ)如果能,請(qǐng)你在圖中作出點(diǎn) F(保留作圖痕跡,不寫證明).并直接寫出∠ECF 的度 數(shù);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D的切線交AC的延長(zhǎng)線于點(diǎn)G.
求證:(1)DG⊥AG;
(2)AG+CG=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于的二次三項(xiàng)式中(表示實(shí)數(shù)),在實(shí)數(shù)范圍內(nèi)一定能分解因式的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB=4,點(diǎn)P是AB邊上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作AB的垂線交AC邊與點(diǎn)D,以PD為邊作∠DPE=60°,PE交BC邊與點(diǎn)E.
(1)當(dāng)點(diǎn)D為AC邊的中點(diǎn)時(shí),求BE的長(zhǎng);
(2)當(dāng)PD=PE時(shí),求AP的長(zhǎng);
(3)設(shè)AP 的長(zhǎng)為,四邊形CDPE的面積為,請(qǐng)直接寫出與的函數(shù)解析式及自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,CD是AB上的中線,且DA=DB=DC.
(1)已知∠A=30°,求∠ACB的度數(shù);
(2)已知∠A=40°,求∠ACB的度數(shù);
(3)已知∠A=x°,求∠ACB的度數(shù);
(4)請(qǐng)你根據(jù)解題結(jié)果歸納出一個(gè)結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,ACB=90°,DE是AB邊的垂直平分線,與AC交于點(diǎn)D,與AB交于點(diǎn)E,M是BD的中點(diǎn)
(1)求證: CM= EM;
(2)當(dāng)線段AC長(zhǎng)度改變時(shí), △CME與△ABD的面積之比是否發(fā)生變化?如果不變,求出比值;如果發(fā)生變化。說(shuō)明如何變化.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)A(0,6)的直線AB與直線OC相交于點(diǎn)C(2,4)動(dòng)點(diǎn)P沿路線O→C→B運(yùn)動(dòng).(1)求直線AB的解析式;(2)當(dāng)△OPB的面積是△OBC的面積的時(shí),求出這時(shí)點(diǎn)P的坐標(biāo);(3)是否存在點(diǎn)P,使△OBP是直角三角形?若存在,直接寫出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是__________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com