【題目】如圖所示,在△ABC中,CD是AB上的中線,且DA=DB=DC.
(1)已知∠A=30°,求∠ACB的度數(shù);
(2)已知∠A=40°,求∠ACB的度數(shù);
(3)已知∠A=x°,求∠ACB的度數(shù);
(4)請(qǐng)你根據(jù)解題結(jié)果歸納出一個(gè)結(jié)論.
【答案】(1)90°;(2)90°;(3)90°;(4)三角形中,一邊上的中線等于這邊的一半,那么這邊所對(duì)的角等于90°.
【解析】
(1)(2)(3)利用等腰三角形及三角形內(nèi)角和定理即可求出答案;
(4)三角形中,一邊上的中線等于這邊的一半,那么這邊所對(duì)的角等于90°.
解:(1)∵在△ABC中,CD是AB上的中線,且DA=DC,∠A=30°
∴∠ACD=30°
∵∠CDB是△ACD的外角
∴∠CDB=60°
∵DB=CD
∴∠DCB=∠B=60°
∴∠ACB=∠ACD+∠DCB=30°+60°=90°;
(2)若∠A=40°,同(1),可知∠ACD=40°,∠CDB=40°+40°=80°
∠DCB=(180°﹣∠CDB)=(180°﹣80°)=50°
∴∠ACB=∠ACD+∠DCB=40°+50°=90°;
(3)若∠A=x°,同(1),可知∠ACD=x°,∠CDB=x°+x°=2x°
∠DCB=(180°﹣∠CDB)=(180°﹣2x°)=90°﹣x°,
故∠ACB=∠ACD+∠DCB=x°+90°﹣x°=90°;
(4)三角形中,一邊上的中線等于這邊的一半,那么這邊所對(duì)的角等于90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),且A,B兩點(diǎn)的坐標(biāo)分別為(-2,0),(8,0),與y軸交于點(diǎn)C(0,-4),連接BC,以BC為一邊,點(diǎn)O為對(duì)稱中心作菱形BDEC,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線L交拋物線于點(diǎn)Q,交BD于點(diǎn)M.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),試探究m為何值時(shí),四邊形CQMD是平行四邊形?
(3)位于第四象限內(nèi)的拋物線上是否存在點(diǎn)N,使得△BCN的面積最大?若存在,求出N點(diǎn)的坐標(biāo),及△BCN面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點(diǎn)E,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),AP=AC,且∠B=2∠P.
(1)求證:∠B=2∠PCA.
(2)求證:PA是⊙O的切線;
(3)若點(diǎn)B位于直徑CD的下方,且CD平分∠ACB,試判斷此時(shí)AE與BE的大小關(guān)系,并說(shuō)明由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,根據(jù)圖象提供的信息,下列結(jié)論正確的是( )
A. >>> B. <<<
C. >>> D. >>>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,等腰直角三角形ABC中,∠BAC=90°,BA=AC,點(diǎn)E、F是線段BC上兩動(dòng)點(diǎn)且∠EAF=45°,請(qǐng)寫(xiě)出BE、EF、FC之間的等量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(是常數(shù))
(1)求證:不論為何值,該函數(shù)圖象與軸一定有兩個(gè)公共點(diǎn)。
(2)若該函數(shù)圖象經(jīng)過(guò)點(diǎn)(0,-2),則該函數(shù)圖象怎樣平移經(jīng)過(guò)原點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)“分式”一章后,老師寫(xiě)出下面的一道題讓同學(xué)們解答.
計(jì)算: 其中小明的解答過(guò)程如下:
解:原式 (A)
(B)
(C)
(D)
(1)上述計(jì)算過(guò)程中,是從哪一步開(kāi)始出現(xiàn)錯(cuò)誤的?請(qǐng)寫(xiě)出該步代號(hào):______;
(2)寫(xiě)出錯(cuò)誤原因是____________;
(3)本題正確的解答過(guò)程.
解:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接五一黃金周的購(gòu)物高峰,某品牌專賣(mài)店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種運(yùn)動(dòng)鞋.其中甲、乙兩種運(yùn)動(dòng)鞋的進(jìn)價(jià)和售價(jià)如下表:
運(yùn)動(dòng)鞋價(jià)格 | 甲 | 乙 |
進(jìn)價(jià)(元/雙) | m | m﹣30 |
售價(jià)(元/雙) | 240 | 160 |
已知:用3000元購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋的數(shù)量與用2400元購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋的數(shù)量相同.
(1)求m的值;
(2)若購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋x(雙),要使購(gòu)進(jìn)的甲、乙兩種運(yùn)動(dòng)鞋共200雙的總利潤(rùn)(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))不少于13000元且不超過(guò)13500元,問(wèn)該專賣(mài)店有幾種進(jìn)貨方案;
(3)在(2)的條件下求出總利潤(rùn)y(元)與購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋x(雙)的函數(shù)關(guān)系式,并用關(guān)系式說(shuō)明哪種方案的利潤(rùn)最大,最大利潤(rùn)是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個(gè)實(shí)數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com