【題目】如圖,AB是⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D的切線交AC的延長(zhǎng)線于點(diǎn)G.
求證:(1)DG⊥AG;
(2)AG+CG=AB.
【答案】見解析
【解析】
(1)連接OD,根據(jù)等腰三角形的性質(zhì)結(jié)合角平分線的性質(zhì)可得出∠CAD=∠ODA,利用“內(nèi)錯(cuò)角相等,兩直線平行”可得出AE∥OD,結(jié)合切線的性質(zhì)即可證出DG⊥AG;
(2)過點(diǎn)D作DM⊥AB于點(diǎn)M,連接CD、DB,根據(jù)角平分線的性質(zhì)可得出DG=DM,
結(jié)合AD=AD、∠AGD=∠AMD=90°即可證出△DAG≌△DAM(SAS),根據(jù)全等三角形的性質(zhì)可得出AG=AM,由∠GAD=∠MAD可得出= ,進(jìn)而可得出CD=BD,結(jié)合DG=DM可證出Rt△DGC≌Rt△DMB(HL),根據(jù)全等三角形的性質(zhì)可得出CG=BM,結(jié)合AB=AM+BM即可證出AG+CG=AB.
(1)連接OD,
OA=OD,
∠OAD=∠ODA,
DA平分∠BAC,
則∠OAD=∠CAD,
∠CAD=∠ODA,
AE∥OD,
DG是⊙O的切線,則
DG⊥AG;
(2)過點(diǎn)D作DM⊥AB于點(diǎn)M,連接CD、DB,
DA平分∠BAC,
DG=DM,
結(jié)合AD=AD、∠AGD=∠AMD=90°,
△DAG≌△DAM(SAS),
AE=AM,
由∠GAD=∠MAD,
= ,
CD=BD,結(jié)合DG=DM可證出Rt△DGC≌Rt△DMB(HL),
CG=BM,
AB=AM+BM,
AG+CG=AB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程有兩個(gè)實(shí)數(shù)根.
(1)求實(shí)數(shù)的取值范圍;
(2)若方程的兩實(shí)數(shù)根滿足,求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】注意:為了使同學(xué)們更好地解答本題,我們提供了一種解題思路,你可以依照這個(gè)思路,填寫表格,并完成本題解答的全過程.如果你選用其他的解題方案,此時(shí),不必填寫表格, 只需按照解答題的一般要求,進(jìn)行解答即可.
某校八年級(jí)學(xué)生由距博物館 10km 的學(xué)校出發(fā)前往參觀,一部分同學(xué)騎自行車先走,過了20min 后,其余同學(xué)乘汽車出發(fā),結(jié)果他們同時(shí)到達(dá).已知汽車的速度是騎車同學(xué)速度 的 2 倍,求騎車同學(xué)的速度.
設(shè)騎車同學(xué)的速度為 xkm / h
(Ⅰ)根據(jù)題意,利用速度、時(shí)間、路程之間的關(guān)系,用含有 x 的式子填寫下表:
速度(千米 / 時(shí)) | 所用時(shí)間(時(shí) ) | 所走的路程(千米) | |
騎自行車 | x | 10 | |
乘汽車 | 10 |
(Ⅱ)列出方程,并求出問題的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)A(1,3)、B(3,m).
(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射擊隊(duì)為了解運(yùn)動(dòng)員的年齡情況,作了一次年齡調(diào)查,根據(jù)射擊運(yùn)動(dòng)員的年齡(單位:歲),繪制出如圖的統(tǒng)計(jì)圖.
(1)求m的值;
(2)該射擊隊(duì)運(yùn)動(dòng)員年齡是眾數(shù)是 .
(3)求該射擊隊(duì)運(yùn)動(dòng)員的平均年齡;
(4)若該射擊隊(duì)有13歲運(yùn)動(dòng)員2人,則該射擊隊(duì)中14歲運(yùn)動(dòng)員有幾人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點(diǎn)E,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),AP=AC,且∠B=2∠P.
(1)求證:∠B=2∠PCA.
(2)求證:PA是⊙O的切線;
(3)若點(diǎn)B位于直徑CD的下方,且CD平分∠ACB,試判斷此時(shí)AE與BE的大小關(guān)系,并說明由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個(gè)幾何體的小正方體的個(gè)數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,等腰直角三角形ABC中,∠BAC=90°,BA=AC,點(diǎn)E、F是線段BC上兩動(dòng)點(diǎn)且∠EAF=45°,請(qǐng)寫出BE、EF、FC之間的等量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,且,,且,請(qǐng)按照?qǐng)D中所標(biāo)注的數(shù)據(jù)計(jì)算圖中實(shí)線所圍成的圖形的面積______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com