精英家教網 > 初中數學 > 題目詳情

【題目】數學活動

問題情境:

如圖1ABCABAC,BAC90°,D,E分別是邊ABAC的中點ADE繞點A順時針旋轉α(0°α90°)得到ADE,連接CE,BD′.探究CEBD的數量關系;

1   2 3   4

探究發(fā)現:

(1)1,CEBD的數量關系是________

(2)如圖2,若將問題中的條件“D,E分別是邊AB,AC的中點”改為“DAB邊上任意一點,DEBCAC于點E,其他條件不變,(1)CEBD的數量關系還成立嗎?請說明理由;

拓展延伸:

(3)如圖3,(2)的條件下,連接BECD,分別取BCCD,EDBE的中點F,GH,I順次連接F,G,H,I得到四邊形FGHI.請判斷四邊形FGHI的形狀并說明理由;

(4)如圖4,ABC,ABAC,BAC60°D,E分別在AB,ACDEBC,ADE繞點A順時針旋轉60°得到ADE連接CE,BD′.請你仔細觀察,提出一個你最關心的數學問題(例如:CEBD相等嗎?)

【答案】CEBD

【解析】試題分析:(1)先證明AD=AE,再根據旋轉得到∠BAD′=∠CAE′=α,AD′=AE′,證明△ABD′≌△ACE′,根據全等三角形的對應邊相等即可得;

(2)類比(1)的方法先證明AD=AE,然后再證明△ABD′≌△ACE′,根據全等三角形的性質即可得;

(3)先證明四邊形FGHI是平行四邊形,再證明四邊形FGHI是菱形, 延長CE交BD′于點M,由(2)得△ABD′≌△ACE′, 從而推導可得∠CBM+∠BCM=90°,進而可推導得到∠IFG=90°,從而得四邊形FGHI是正方形;

(4)答案不唯一,只要符合題意即可.

試題解析:(1) ∵D、E分別為AB、AC的中點,AD=ABAE=AC,

∵AB=AC,∴AD=AE,

∵△ADE繞點A順時針旋轉α角(0°<α<90°),得到△AD′E′,

∴∠BAD′=∠CAE′=α,AD′=AE′,

在△ABD′和△ACE′中

∴△ABD′≌△ACE′,

∴CE′=BD′,

故答案為:CE′=BD′;

(2)CE′與BD′的數量關系還成立,理由如下:

∵AB=AC,

∴∠ABC=∠ACB,

∵DE∥BC,

∴∠ADE=∠ABC,∠AED=∠ACB.

∴∠ADE=∠AED,∴ AD=AE,

∵△ADE繞點A順時針旋轉α角(0°<α<90°),得到△AD′E′,

∴∠BAD′=∠CAE′=α,AD′=AE′,

在△ABD′和△ACE′中

∴ △ABD′≌△ACE′,

∴ CE′=BD′;

(3)四邊形FGHI是正方形,

∵F,G,H,I分別是BC,CD′,E′D′,BE′的中點,

∴FG=HI=BD′,IF=HG=CE′.

∴四邊形FGHI是平行四邊形,

又∵BD′=CE′,∴FG=IF,

∴四邊形FGHI是菱形,

延長CE交BD‘于點M,如圖,

由(2)得△ABD′≌△ACE′,

∴∠ACE′=∠ABD′,

∵∠BAC=90°,

∴∠ACE′+∠ABC+∠BCM=90°,

∴∠ABD′+∠ABC+∠BCM=90°,

∴∠CBM+∠BCM=90°,

又∵FG∥BD′,IF∥CE′,

∴∠CFG=∠CBM,∠BFI=∠BCM,

∴∠CFG+∠BFI=90°,∴∠IFG=90°,

∴四邊形FGHI是正方形;

(4)答案不唯一,如:①△ABD′和△ACE′全等嗎?

②△BDD′和△CEE′全等嗎?

③∠BD′D和∠CE′E相等嗎?

④四邊形AD′DE是菱形嗎?,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】元旦是公歷新一年的第一天.“元旦”一詞最早出現于《晉書》:“顓帝以孟夏正月為元,其實正朔元旦之春.”中國古代曾以臘月、十月等的月首為元旦,1949年中華人民共和國以公歷11日為元旦,因此元旦在中國也被稱為“陽歷年”.為慶祝元旦,太原某商場舉行促銷活動,促銷的方法是“消費超過200元時,所購買的商品按原價打8折后,再減少20元”.若某商品的原價為元,則購買該商品實際付款的金額是(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】用一個平面去截正方體(如圖),下列關于截面(截出的面)形狀的結論:

①可能是銳角三角形;②可能是鈍角三角形;

③可能是長方形;④可能是梯形.

其中正確結論的是______(填序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀思考:

數學課上老師出了一道分式化簡求值題目.

題目:÷(x+1)·,其中x=-.

勤奮小組的楊明同學展示了他的解法:

解:原式= ..................第一步

................ ..第二步

..........................第三步

..................................第四步

x=-時,原式= .......................第五步

請你認真閱讀上述解題過程,并回答問題:

你認為該同學的解法正確嗎?如有錯誤,請指出錯誤在第幾步,并寫出完整、正確的解答過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1所示是一枚質地均勻的骰子.骰子有六個面并分別代表數字12,3,4,5,6.如圖2,正六邊形ABCDEF的頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子骰子向上的一面上的點數是幾,就沿正六邊形的邊順時針方向連續(xù)跳幾個邊長.如:若從圈A起跳第一次擲得3就順時針連續(xù)跳3個邊長落到圈D;若第二次擲得2就從圈D開始順時針連續(xù)跳2個邊長,落到圈F……

設游戲者從圈A起跳.

(1)小明隨機擲一次骰子求落回到圈A的概率P1;

(2)小亮隨機擲兩次骰子,用列表法或畫樹狀圖法求最后落回到圈A的概率P2,并指出他與小明落回到圈A的可能性一樣嗎?

1    2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是一個無理數篩選器的工作流程圖.

1)當時,的值為_____________;

2)是否存在輸入有意義的的值后,卻輸不出的值?如果存在,寫出所有滿足要求的的值;如果不存在,請說明理由;

3)當輸出的的值是時,判斷輸入的的值是否唯一,如果不唯一,請寫出其中的個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,ABC是等邊三角形,AECD,BQADQBEAD于點P

(1)求證:ABE≌△CAD;

(2)若PQ=2,BE=5,求PE的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABO的直徑,BC為弦,D為弧AC的中點,AC、BD相交于點EAPBD的延長線于點P.∠PAC=2∠CBD

(1)求證:APO的切線;

(2)若PD=3,AE=5,求△APE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,兩摞規(guī)格完全相同的課本整齊疊放在桌子上,請根據圖中所給出的數據信息,回答下列問題:

1)每本課本的厚度為 ;

2)若有一摞上述規(guī)格的課本本,整齊疊放在桌子上,請用含的代數式表示出這一摞數學課本的頂部距離地面的高度為( ;

3)當時,若從中取走15本,求余下的課本的頂部距離地面的高度.

查看答案和解析>>

同步練習冊答案