【題目】小明和小剛進(jìn)行賽跑訓(xùn)練,他們選擇了一個土坡,按同一路線同時出發(fā),從坡腳跑到坡頂再原路返回坡腳.他們倆上坡的平均速度不同,下坡的平均速度則是各自上坡平均速度的1. 5倍.設(shè)兩人出發(fā)x min后距出發(fā)點(diǎn)的距離為y m.圖中折線段OBA表示小明在整個訓(xùn)練中y與x的函數(shù)關(guān)系,其中點(diǎn)A在x軸上,點(diǎn)B坐標(biāo)為(2,480).
(1)點(diǎn)B所表示的實(shí)際意義是 ;
(2)求出AB所在直線的函數(shù)關(guān)系式;
(3)如果小剛上坡平均速度是小明上坡平均速度的一半,那么兩人出發(fā)后多長時間第一次相遇?
【答案】小明出發(fā)2分鐘跑到坡頂,此時離坡腳480米;y=-360x+1200;2.5min.
【解析】試題分析:(1)、根據(jù)函數(shù)圖象得出點(diǎn)B的實(shí)際意義;(2)、首先求出上坡的速度,然后得出下坡的速度已經(jīng)點(diǎn)A的坐標(biāo);利用待定系數(shù)法求出函數(shù)解析式;(3)、首先求出小剛上坡的速度,然后進(jìn)行計算.
試題解析:(1)、小明出發(fā)2分鐘跑到坡頂,此時離坡腳480米;
(2)、小明上坡的平均速度為480÷2=240(m/min) 則其下坡的平均速度為:240×1.5=360(m/min),
故回到出發(fā)點(diǎn)時間為2+480÷360=(min), ∴A點(diǎn)坐標(biāo)為(,0),
設(shè)y=kx+b,將B(2,480)與A(,0)代入得:解得:
∴y=-360x+1200.
(3)、小剛上坡的平均速度為240×0.5=120(m/min),小明的下坡平均速度為240×1.5=360(m/min),由圖像得小明到坡頂時間為2分鐘,
此時小剛還有480-2×120=240m沒有跑完, 兩人第一次相遇時間為2+240÷(120+360)=2.5(min).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為開展以“感恩和珍愛生命”為主題的教育活動,某學(xué)校結(jié)合學(xué)生實(shí)際,調(diào)查了部分學(xué)生是否知道母親生日的情況,繪制了圖①、圖②的扇形統(tǒng)計圖和條形統(tǒng)計圖,請你根據(jù)圖中信息,解答下列問題
(1)求本次被調(diào)查學(xué)生的人數(shù),并補(bǔ)全條形統(tǒng)計圖;
(2)若全校共有2700名學(xué)生,請你估計全校有多少名學(xué)生知道母親的生日;
(3)通過對以上數(shù)據(jù)的分析,你能得知哪些信息?請你寫出一條.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)G是正方形ABCD對角線CA的延長線上任意一點(diǎn),以線段AG為邊作一個正方形AEFG,線段EB和GD相交于點(diǎn)H.
(1)求證:EB=GD且EB⊥GD;
(2)若AB=2,AG=,求的長;
(3)如圖2,正方形AEFG繞點(diǎn)A逆時針旋轉(zhuǎn)連結(jié)DE,BG,與的面積之差是否會發(fā)生變化?若不變,請求出與的面積之差;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一個智能機(jī)器人接到如下指令:從原點(diǎn)O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…第n次移動到An.則△OA6A2020的面積是( )
A.505B.504.5C.505.5D.1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x、y的二元一次方程組x-y=3a①和x+3y=4-a②.
(1)如果是方程①的解,求a的值;
(2)當(dāng)a=1時,求兩個方程的公共解;
(3)若方程組的解滿足x≤0,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】霧霾天氣持續(xù)籠罩我國大部分地區(qū),困擾著廣大市民的生活,口罩市場出現(xiàn)熱銷,小明的爸爸用12000元購進(jìn)甲、乙兩種型號的口罩在自家商店銷售,銷售完后共獲利2700元,進(jìn)價和售價如表:
(1)小明爸爸的商店購進(jìn)甲、乙兩種型號口罩各多少袋?
(2)該商店第二次以原價購進(jìn)甲、乙兩種型號口罩,購進(jìn)甲種型號口罩袋數(shù)不變,而購進(jìn)乙種型號口罩袋數(shù)是第一次的2倍,甲種口罩按原售價出售,而效果更好的乙種口罩打折讓利銷售,若兩種型號的口罩全部售完,要使第二次銷售活動獲利不少于2460元,每袋乙種型號的口罩最多打幾折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)中,四邊形為矩形,如圖1,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,已知滿足.
(1)求的值;
(2)①如圖1,分別為上一點(diǎn),若,求證:;
②如圖2,分別為上一點(diǎn),交于點(diǎn). 若,,則___________
(3)如圖3,在矩形中,,點(diǎn)在邊上且,連接,動點(diǎn)在線段是(動點(diǎn)與不重合),動點(diǎn)在線段的延長線上,且,連接交于點(diǎn),作于. 試問:當(dāng)在移動過程中,線段的長度是否發(fā)生變化?若不變求出線段的長度;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次根式的化簡中,若被開方數(shù)還有根號,有的能將被開方數(shù)化成另一個二次根式的平方的形式,比如:,聰明的你可以繼續(xù)探究,當(dāng)a,b,m,n為正整數(shù)時,若,則有,所以.模仿上述探究解決下列問題:
(1)當(dāng)a,b,m,n為正整數(shù)時,,請用含m,n的代數(shù)式分別表示a,b:a= ,b= .
(2)填空:=( + )2
(3)若,且a,m,n均為正整數(shù),求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com