【題目】如圖①,在平面直角坐標(biāo)系中,直線:分別與軸、軸交于點(diǎn)、,且與直線:交于點(diǎn),以線段為邊在直線的下方作正方形,此時(shí)點(diǎn)恰好落在軸上.
(1)求出三點(diǎn)的坐標(biāo).
(2)求直線的函數(shù)表達(dá)式.
(3)在(2)的條件下,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn),在平面內(nèi)是否存在點(diǎn),使得以、、、為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1),,;(2);(3)存在,,,.
【解析】
(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)B,C的坐標(biāo),聯(lián)立直線l1,l2的解析式成方程組,通過解方程組可求出點(diǎn)A的坐標(biāo);
(2)過點(diǎn)A作AF⊥y軸,垂足為點(diǎn)F,則△ACF≌△CDO,利用全等三角形的性質(zhì)可求出點(diǎn)D的坐標(biāo),根據(jù)點(diǎn)C,D的坐標(biāo),利用待定系數(shù)法即可求出直線CD的解析式;
(3)分OC為對角線及OC為邊兩種情況考慮:①若OC為對角線,由菱形的性質(zhì)可求出點(diǎn)P的縱坐標(biāo),再利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)P1的坐標(biāo);②若OC為邊,設(shè)點(diǎn)P的坐標(biāo)為(m,2m+6),分CP=CO和OP=OC兩種情況,利用兩點(diǎn)間的距離公式可得出關(guān)于m的方程,解之取其負(fù)值,再將其代入點(diǎn)P的坐標(biāo)中即可得出點(diǎn)P2,P3的坐標(biāo).
(1)∵直線:,
∴當(dāng)時(shí),;當(dāng)時(shí),,
∴,,
解方程組:得:,
∴點(diǎn)的坐標(biāo)為;
(2)如圖1,作,則,
∵四邊形為正方形,
∴,
∵,,
∴,
∵
∴,
∴,
∵,,
∴,
∴
設(shè)直線的解析式為,
將、代入得:,
解得:,
∴直線的解析式為
(3)存在
①以為對角線時(shí),如圖2所示,
則PQ垂直平分CO,
則點(diǎn)P的縱坐標(biāo)為:,
當(dāng)y=3時(shí),,解得:x=
∴點(diǎn);
②以為邊時(shí),如圖2,設(shè)點(diǎn)P(m,2m+6),
當(dāng)CP=CO時(shí),,
解得:(舍去)
∴,
當(dāng)OP=OC時(shí),,
解得:(舍去)
∴
綜上所述,在平面內(nèi)是否存在點(diǎn),使得以、、、為頂點(diǎn)的四邊形是菱形,,,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個(gè)單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無須說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師出了這樣一道題:甲、乙兩地相距1400km,乘高鐵列車從甲地到乙地比乘特快列車少用9h,已知高鐵列車的平均行駛速度是特快列車的2.8倍.求高鐵列車從甲地到乙地的時(shí)間.
老師要求同學(xué)先用列表方式分析再解答.下面是兩個(gè)小組分析時(shí)所列的表格:
小組甲:設(shè)特快列車的平均速度為km/h.
時(shí)間/h | 平均速度/(km/h) | 路程/km | |
高鐵列車 | 1400 | ||
特快列車 | 1400 |
小組乙:高鐵列車從甲地到乙地的時(shí)間為h.
時(shí)間/h | 平均速度/(km/h) | 路程/km | |
高鐵列車 | 1400 | ||
特快列車 | 1400 |
(1)根據(jù)題意,填寫表格中空缺的量;
(2)結(jié)合表格,選擇一種方法進(jìn)行解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 y=﹣x+4 與坐標(biāo)軸分別交于 A,B 兩點(diǎn),把△AOB 繞點(diǎn)A 逆時(shí)針旋轉(zhuǎn) 90°后得到△AO′B′.
(1)寫出點(diǎn) A 的坐標(biāo),點(diǎn) B 的坐標(biāo);
(2)在方格中直接畫出△AO′B′;
(3)寫出點(diǎn) O′的坐標(biāo);點(diǎn) B′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年某園林綠化公司購回一批香樟樹,全部售出后利潤率為20%.
(1)求 2016年每棵香樟樹的售價(jià)與成本的比值.
(2)2017年,該公司購入香樟樹數(shù)量增加的百分?jǐn)?shù)與每棵香樟樹成本降低的百分?jǐn)?shù)均為a,經(jīng)測算,若每棵香樟樹售價(jià)不變,則總成本將比2016年的總成本減少8萬元;若每棵香樟樹售價(jià)提高百分?jǐn)?shù)也為a,則銷售這批香樟樹的利潤率將達(dá)到4a.求a的值及相應(yīng)的2017年購買香樟樹的總成本.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等腰繞底角頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°后得到,如果,那么兩個(gè)三角形的重疊部分面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與雙曲線交于A點(diǎn),且點(diǎn)A的橫坐標(biāo)是4.雙曲線上有一動(dòng)點(diǎn)C(m,n), .過點(diǎn)A作軸垂線,垂足為B,過點(diǎn)C作軸垂線,垂足為D,聯(lián)結(jié)OC.
(1)求的值;
(2)設(shè)的重合部分的面積為S,求S與m的函數(shù)關(guān)系;
(3)聯(lián)結(jié)AC,當(dāng)?shù)冢?/span>2)問中S的值為1時(shí),求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,點(diǎn)為邊上一點(diǎn),過點(diǎn)作于,已知.
(1)若,求的度數(shù);
(2)連接,過點(diǎn)作于,延長交于點(diǎn),若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC,BD交于O,EF過點(diǎn)O與AD,BC分別交于E,F,若AB=4,BC=5,OE=1.5,則四邊形EFCD的周長_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com