【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購買若干個籃球和足球(每個籃球的價格相同,每個足球的價格也相同).若購買個籃球和
個足球共需
元,購買
個籃球和
個足球共需
元.
(1)購買一個籃球、一個足球各需多少元?
(2)根據(jù)該中學(xué)的實(shí)際情況,需從體育用品商店一次性購買籃球和足球共個.要求購買總金額不能超過
元,則最多能購買多少個籃球?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點(diǎn)C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時,如圖(3)所示,延長CG交AD于點(diǎn)H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖題:
(1)在如圖所示的方格紙中,經(jīng)過線段AB外一點(diǎn)C,不用量角器與三角尺,僅用直尺,畫線段AB的垂線CE和平行線CH.
(2)判斷CE、CH的位置關(guān)系是 .
(3)連接AC和BC,若小正方形的邊長為a,求三角形ABC的面積.(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,M是AB的中點(diǎn),P是BC邊上的動點(diǎn),連結(jié)PM,以點(diǎn)P為圓心,PM長為半徑作⊙P.當(dāng)⊙P與正方形ABCD的邊相切時,BP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的等邊
和邊長為
的等邊
,它們的邊
,
位于同一條直線
上,開始時,點(diǎn)
與點(diǎn)
重合,
固定不動,然后把
自左向右沿直線
平移,移出
外(點(diǎn)
與點(diǎn)
重合)停止,設(shè)
平移的距離為
,兩個三角形重合部分的面積為
,則
關(guān)于
的函數(shù)圖象是( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,點(diǎn)
為斜邊
的中點(diǎn),連接
將
沿直線
翻折,使點(diǎn)
落在點(diǎn)
的位置,連接
交
于點(diǎn)
若
則
的值為( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,連接AE.AC和BE相交于點(diǎn)O.
(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖2,P是線段BC上一動點(diǎn)(圖2),(不與點(diǎn)B、C重合),連接PO并延長交線段AE于點(diǎn)Q,QR⊥BD,垂足為點(diǎn)R.
①四邊形PQED的面積是否隨點(diǎn)P的運(yùn)動而發(fā)生變化.若變化,請說明理由;若不變,求出四邊形PQED的面積;
②當(dāng)線段PB的長為何值時,△PQR與△BOC相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,AD=8.動點(diǎn)E,F同時分別從點(diǎn)A,B出發(fā),分別沿著射線AD和射線BD的方向均以每秒1個單位的速度運(yùn)動,連接EF,以EF為直徑作⊙O交射線BD于點(diǎn)M,設(shè)運(yùn)動的時間為t.
(1)當(dāng)點(diǎn)E在線段AD上時,用關(guān)于t的代數(shù)式表示DE,DM.
(2)在整個運(yùn)動過程中,
①連結(jié)CM,當(dāng)t為何值時,△CDM為等腰三角形.
②圓心O處在矩形ABCD內(nèi)(包括邊界)時,求t的取值范圍,并直接寫出在此范圍內(nèi)圓心運(yùn)動的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形
和正方形,
連接
,當(dāng)
時,
與
的關(guān)系是?
如圖2,將正方形
繞點(diǎn)
順時針旋轉(zhuǎn),
中結(jié)論是否仍然成立?若成立,請給出證明:若不成立,請說明理由;
已知
,在旋轉(zhuǎn)過程中,若直線
平分
,請畫出相應(yīng)的圖形,并寫出其中一種情形時
長的思路.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com