【題目】計算:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
【答案】(1)20;(2)6;(3)20;(4)1;(5)8.6;(6)0;(7);(8)350;(9)4;(10).
【解析】
(1)利用加法的交換律和結(jié)合律計算;
(2)把減法轉(zhuǎn)化為加法計算;
(3)利用乘法的交換律和結(jié)合律計算;
(4)把出除法轉(zhuǎn)變化為乘法計算;
(5)利用加法的交換律和結(jié)合律計算;
(6)把除法轉(zhuǎn)變化為乘法,再根據(jù)多個有理數(shù)的乘法法則計算;
(7)根據(jù)乘法的分配率計算;
(8)逆用乘法分配律計算;
(9)(10)先算乘方和括號,再算乘除,后算加減;
(1)原式==26+(-6)=20;
(2)原式==11+(-5)=6;
(3)原式= ;
(4)原式=;
(5)原式= ;
(6)原式=;
(7)原式=
.=-2+1+
=-.
(8)原式=
=
=350.
(9)原式=
=
=8-4
=4;
(10)原式=
=
=
=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的邊OA在x軸上,將平行四邊形沿對角線AC對折,AO的對應(yīng)線段為AD,且點(diǎn)D,C,O在同一條直線上,AD與BC交于點(diǎn)E.
(1)求證:△ABC≌△CDA.
(2)若直線AB的函數(shù)表達(dá)式為,求三角線ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD。理由如下:
∵∠1=∠2(已知)
且∠1=∠4( )
∴∠2=∠4(等量代換)
∴CE∥BF( )
∴∠ =∠BFD( )
又∵∠B=∠C(已知)
∴ (等量代換)
∴AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥DC,∠B=90°,F(xiàn)為DC上一點(diǎn),且FC=AB,E為AD上一點(diǎn),EC交AF于點(diǎn)G.
(1)求證:四邊形ABCF是矩形;
(2)若EA=EG,求證:ED=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在數(shù)軸上A、B兩點(diǎn)對應(yīng)的數(shù)分別是6,-6,∠DCE=90°(C與O重合,D點(diǎn)在數(shù)軸的正半軸上)
(1)如圖1,若CF平分∠ACE,則∠AOF=_______;
(2)如圖2,將∠DCE沿數(shù)軸的正半軸向右平移t(0<t<3)個單位后,再繞頂點(diǎn)C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α.
①當(dāng)t=1時,α=_________;
②猜想∠BCE和α的數(shù)量關(guān)系,并證明;
(3)如圖3,開始∠D1C1E1與∠DCE重合,將∠DCE沿數(shù)軸正半軸向右平移t(0<t<3)個單位,再繞頂點(diǎn)C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α,與此同時,將∠D1C1E1沿數(shù)軸的負(fù)半軸向左平移t(0<t<3)個單位,再繞頂點(diǎn)C1順時針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1=β,若α,β滿足|α-β|=45°,請用t的式子表示α、β并直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長線于點(diǎn)F.
(1)求證:EF⊥AB;
(2)若∠C=30°,EF=,求EB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)|﹣2|+|﹣3|
(2)8.63﹣(﹣1.37)
(3)(﹣25)+34+156+(﹣65)
(4)(﹣0.5)﹣2﹣(+2)
(5)(﹣52)+24﹣(+74)+12.
(6)﹣﹣(﹣)+(﹣)﹣(+)
(7)(+)+(﹣)﹣(+)﹣(﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=1,AD=2,點(diǎn)E是邊AD上的一個動點(diǎn),把△BAE沿BE折疊,點(diǎn)A落在A′處,如果A′恰在矩形的對稱軸上,則AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,四邊形ABCD為矩形,AB=a,BC=b,點(diǎn)P在矩形ABCD的對角線AC上,Rt△PEF的兩條直角邊PE,PF分別交BC,DC于點(diǎn)M,N,當(dāng)PM⊥BC,PN⊥CD時, = (用含a,b的代數(shù)式表示).
(2)拓展探究
在(1)中,固定點(diǎn)P,使△PEF繞點(diǎn)P旋轉(zhuǎn),如圖2,的大小有無變化?請僅就圖2的情形給出證明.
(3)問題解決
如圖3,四邊形ABCD為正方形,AB=BC=a,點(diǎn)P在對角線AC上,M,N分別在BC,CD上,PM⊥PN,當(dāng)AP=nPC時,(n是正實(shí)數(shù)),直接寫出四邊形PMCN的面積是 (用含n,a的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com