【題目】已知二次函數(shù)y=﹣2x2+5x﹣2.
(1)寫出該函數(shù)的對稱軸,頂點(diǎn)坐標(biāo);
(2)求該函數(shù)與坐標(biāo)軸的交點(diǎn)坐標(biāo).
【答案】(1)拋物線的對稱軸x=,頂點(diǎn)坐標(biāo)為(,);(2)拋物線交y軸于(0,﹣2),交x軸于(2,0)或(,0).
【解析】試題分析:(1)把二次函數(shù)y=-2x2+5x-2化為頂點(diǎn)式的形式,根據(jù)二次函數(shù)的性質(zhì)寫出答案即可;
(2)令x=0可求圖象與y軸的交點(diǎn)坐標(biāo),令y=0可求圖象與x軸的交點(diǎn)坐標(biāo);
(1)∵y=﹣2(x2﹣x+﹣)﹣2=﹣2(x﹣)2+,
∴拋物線的對稱軸x=,頂點(diǎn)坐標(biāo)為(,).
(2)對于拋物線y=﹣2x2+5x﹣2,令x=0,得到y(tǒng)=﹣2,令y=0,得到﹣2x2+5x﹣2=0,解得x=2或,
∴拋物線交y軸于(0,﹣2),交x軸于(2,0)或(,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若△ABC內(nèi)一點(diǎn)P,滿足∠PAB=∠PBC=∠PCA=α,則稱點(diǎn)P為△ABC的布洛卡點(diǎn).通過研究一些特殊三角形中的布洛卡點(diǎn),得到如下兩個(gè)結(jié)論:
①若∠BAC=90°,則必有∠APC=90°;②若AB=AC,則必有∠APB=∠BPC.
對于這兩個(gè)結(jié)論,下列說法正確的是( 。
A.①對,②錯(cuò)B.①錯(cuò),②對C.①,②均錯(cuò)D.①,②均對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)E,F(xiàn)在邊BC上,BE=CF,點(diǎn)D在AF的延長線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去B.帶②去C.帶③去D.帶①和②去
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD與點(diǎn)E,連CD分別交AE、AB于點(diǎn)F、G,過點(diǎn)A作AH⊥CD交BD于點(diǎn)H,則下列結(jié)論:①∠ADC=15°;②AF=AG;③△ADF≌△BAH;④ DF=2EH,其中正確結(jié)論的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)貿(mào)市場擬建兩間長方形儲(chǔ)藏室,儲(chǔ)藏室的一面靠墻(墻長30m),中間用一面墻隔開,如圖所示,已知建筑材料可建墻的長度為42m,則這兩間長方形儲(chǔ)藏室的總占地面積的最大值為_______m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度.他們在這棵樹正前方一座樓亭前的臺(tái)階上A點(diǎn)處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處,測得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB為2米,臺(tái)階AC的坡度為1:(即AB:BC=1:),且B、C、E三點(diǎn)在同一條直線上.請根據(jù)以上條件求出樹DE的高度(測傾器的高度忽略不計(jì)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com